Réduction

Sous-espaces stables

Exercice 1 [00755] [Correction]

Soient u et v deux endomorphismes d'un \mathbb{K} -espace vectoriel E.

On suppose que u et v commutent, montrer que ${\rm Im} u$ et ${\rm ker}\, u$ sont stables par v. Que dire de la réciproque?

Exercice 2 [00756] [Correction]

Montrer qu'un endomorphisme f d'un \mathbb{K} -espace vectoriel E commute avec un projecteur p si, et seulement si, les espaces $\operatorname{Im} p$ et $\ker p$ sont stables par f.

Exercice 3 [01722] [Correction]

Soient E un \mathbb{K} -espace vectoriel et f et g deux endomorphismes de E tels que $f\circ g=g\circ f.$

- a) Montrer que $\ker f$ et $\mathrm{Im} f$ sont stables par g i.e. $g(\ker f)\subset \ker f$ et $g(\mathrm{Im} f)\subset \mathrm{Im} f$
- b) En déduire que, si p est un projecteur de E, on a : p et f commutent si, et seulement si, Imp et ker p stables par f.

Exercice 4 [00758] [Correction]

Soit u un endomorphisme d'un $\mathbb{K}\text{-espace}$ vectoriel E de dimension finie. On pose

$$N = \bigcup_{p=0}^{\infty} \ker u^p \text{ et } I = \bigcap_{p=0}^{\infty} \operatorname{Im} u^p$$

- a) Montrer qu'il existe $n \in \mathbb{N}$ tel que $N = \ker u^n$ et $I = \operatorname{Im} u^n$.
- b) Etablir que N et I sont des sous-espaces vectoriels supplémentaires stables par u et tels que les restrictions de u à N et I soient respectivement nilpotente et bijective.
- c) Réciproquement on suppose $E=F\oplus G$ avec F et G sous-espaces vectoriels stables par u tels que les restrictions de u à F et G soient respectivement nilpotente et bijective. Etablir F=N et G=I.

Exercice 5 [00216] [Correction]

Soient $u \in \mathcal{L}(E)$ (avec dim $E < +\infty$) nilpotent et $p \in \mathbb{N}^*$ tel que $u^p = 0$.

a) Etablir que pour tout $k \in \{1, ..., p\}$, il existe un sous-espace vectoriel F_k de E tel que

$$\ker u^k = \ker u^{k-1} \oplus F_k$$

- b) Etablir que $E = F_1 \oplus \cdots \oplus F_p$.
- c) Observer que la matrice de u dans une base adaptée à la somme directe ci-dessus est triangulaire supérieure à coefficients diagonaux nuls.

Exercice 6 [03459] [Correction]

Soient E un \mathbb{R} -espace vectoriel de dimension finie n non nulle et $f \in \mathcal{L}(E)$ vérifiant $f^2 = -\mathrm{Id}_E$.

- a) Soit $a \in E$ non nul. Montrer que la famille (a, f(a)) est libre.
- On pose F(a) = Vect(a, f(a)).
- b) Montrer qu'il existe des vecteurs de E a_1, \ldots, a_p non nuls tels que

$$E = F(a_1) \oplus \cdots \oplus F(a_p)$$

c) En déduire que la dimension de E est paire et justifier l'existence d'une base de E dans laquelle la matrice de f est simple.

Exercice 7 [03205] [Correction]

Soient E un \mathbb{R} -espace vectoriel de dimension finie et u un endomorphisme de E vérifiant

$$u^3 + u = 0$$

- a) Montrer que l'espace ${\rm Im} u$ est stable par u.
- b) Pour $x \in \text{Im} u$, calculer $u^2(x)$
- c) Soit v l'endomorphisme induit par u sur Im u.

Montrer que v est un isomorphisme.

d) En déduire que le rang de l'endomorphisme u est un entier pair.

Exercice 8 [00757] [Correction]

Déterminer les sous-espaces vectoriels stables pour l'endomorphisme de dérivation dans $\mathbb{K}[X]$.

Exercice 9 [03462] [Correction]

[Endomorphisme cyclique]

Soient u endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \geq 2$.

On suppose que E est le seul sous-espace vectoriel non nul stable par u.

- a) L'endomorphisme u possède-t-il des valeurs propres?
- b) Montrer que pour tout $x \in E \setminus \{0_E\}$, la famille $(x, u(x), \dots, u^{n-1}(x))$ est une base de E.

Quelle est la forme de la matrice de u dans cette base?

c) Montrer que cette matrice ne dépend pas du choix de x.

Exercice 10 [00759] [Correction]

Soient u et v deux endomorphismes d'un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$. On suppose $u \circ v = v \circ u$ et v nilpotent.

On désire montrer

$$\det(u+v) = \det u$$

en raisonnant par récurrence sur la dimension $n \ge 1$.

- a) Traiter le cas n = 1 et le cas v = 0.
- b) Pour $n \ge 2$ et $v \ne 0$, former les matrices de u et v dans une base adaptée à Im v.
- c) Conclure en appliquant l'hypothèse de récurrence aux restrictions de u et v au départ de ${\rm Im} v.$

Exercice 11 [03116] [Correction]

Soient E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ nilpotent. Soit S un sous-espace vectoriel de E stable par u et tel que

$$E = S + Imu$$

Montrer que S = E.

Exercice 12 [00760] [Correction]

Soit $E = E_1 \oplus E_2$ un K-espace vectoriel. On considère

$$\Gamma = \{ u \in \mathcal{L}(E), \ker u = E_1 \text{ et } \operatorname{Im} u = E_2 \}$$

- a) Montrer, pour tout u de Γ que $\tilde{u} = u_{E_2}$ est un automorphisme de E_2 . Soit $\phi: \Gamma \to \operatorname{GL}(E_2)$ définie par $\phi(u) = \tilde{u}$.
- b) Montrer que \circ est une loi interne dans Γ .
- c) Montrer que ϕ est un morphisme injectif de (Γ, \circ) dans $(GL(E_2), \circ)$.
- d) Montrer que ϕ est surjectif.
- e) En déduire que (Γ, \circ) est un groupe. Quel est son élément neutre?

Exercice 13 [02897] [Correction]

On note $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$ et on pose, pour toute $f \in E$ et tout $x \in \mathbb{R}$,

$$Tf(x) = f(x) + \int_0^x f(t) dt$$

- a) L'opérateur T est-il un automorphisme de E?
- b) Existe-t-il un sous-espace vectoriel de E de dimension finie impaire et stable par T?

Exercice 14 [04132] [Correction]

Une matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ est dite magique s'il existe un réel s vérifiant

$$\forall i \in [\![1,n]\!], \sum_{j=1}^n a_{i,j} = s \text{ et } \forall j \in [\![1,n]\!], \sum_{i=1}^n a_{i,j} = s$$

On note U la colonne $U = {}^{t} (1 \cdots 1) \in \mathcal{M}_{n,1}(\mathbb{R})$.

a) Montrer que la matrice A est magique si, et seulement si, il existe des réels λ et μ vérifiant

$$AU = \lambda U$$
 et ${}^tUA = \mu^tU$

Que dire alors des réels λ et μ ?

- b) On introduit les espaces D = Vect(U) et $H = \{X \in \mathcal{M}_{n,1}(\mathbb{R})/tUX = 0\}$.
- Pour quoi peut-on affirmer que ces espaces sont supplémentaires ?
- c) Montrer qu'une matrice A de $\mathcal{M}_n(\mathbb{R})$ est magique si, et seulement si, elle laisse stable les espaces D et H.
- d) En déduire que la dimension de l'espace de matrices magiques de $\mathcal{M}_n(\mathbb{R})$.

Matrices semblables

Exercice 15 [00721] [Correction]

Soit $A \in \mathcal{M}_3(\mathbb{R})$ vérifiant $A^2 = 0$ et $A \neq 0$.

Etablir que A est semblable à la matrice

$$B = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Exercice 16 [00722] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant

$$A^{n-1} \neq O_n$$
 et $A^n = O_n$

Etablir que A est semblable à la matrice

$$B = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ (0) & & & 0 \end{pmatrix}$$

Exercice 17 [00723] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice non nulle telle que les espaces $\operatorname{Im} A$ et $\ker A$ soient supplémentaires.

Montrer que la matrice A est semblable à une matrice de la forme

$$\left(\begin{array}{cc} A' & 0 \\ 0 & 0 \end{array}\right) \text{ avec } A' \in \mathrm{GL}_r(\mathbb{K})$$

Exercice 18 [00724] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice non nulle telle que $A^2 = 0$. Montrer que A est semblable à

$$B = \left(\begin{array}{cc} 0 & I_r \\ 0 & 0 \end{array}\right)$$

avec r = rgA.

Exercice 19 [00725] [Correction] Soit $A \in \mathcal{M}_3(\mathbb{R})$ non nulle vérifiant

$$A^3 + A = O_3$$

Montrer que A est semblable à la matrice

$$\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)$$

Exercice 20 [00726] [Correction]

Soit $M \in \mathcal{M}_4(\mathbb{R})$ telle que $M^2 + I = 0$.

Montrer que M est semblable à la matrice

$$\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)$$

Exercice 21 [00728] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ de trace nulle.

Montrer que A est semblable à une matrice de la forme

$$\left(\begin{array}{ccc}
0 & & \star \\
& \ddots & \\
\star & & 0
\end{array}\right)$$

Exercice 22 [03136] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang 1.

- a) Montrer que A est semblable à une matrice dont les n-1 premières colonnes sont nulles.
- b) En déduire

$$A^2 = \operatorname{tr}(A).A \text{ et } \det(I_n + A) = 1 + \operatorname{tr}A$$

Exercice 23 [02382] [Correction]

Quelles sont les matrices carrées réelles d'ordre n qui commutent avec diag $(1,2,\ldots,n)$ et lui sont semblables?

Exercice 24 [02691] [Correction]

Soient A et B dans $\mathcal{M}_n(\mathbb{R})$ semblables sur \mathbb{C} . Montrer que A et B sont semblables sur \mathbb{R} .

Exercice 25 [03032] [Correction]

Soit $f: \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$ non constante telle que :

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2, f(AB) = f(A)f(B)$$

Pour $A \in \mathcal{M}_n(\mathbb{C})$, prouver l'équivalence :

A inversible
$$\Leftrightarrow f(A) \neq 0$$

Exercice 26 [01322] [Correction]

Soit $A \in \mathcal{M}_3(\mathbb{R})$ non nulle vérifiant $A^2 = O_3$.

Déterminer la dimension de l'espace

$$\mathcal{C} = \{ M \in \mathcal{M}_3(\mathbb{R}) / AM - MA = O_3 \}$$

Exercice 27 [03778] [Correction]

Les matrices suivantes sont-elles semblables?

$$A = \begin{pmatrix} 3 & 6 & -5 & -2 \\ -1 & -6 & 5 & -2 \\ -1 & -10 & 8 & -3 \\ 0 & -3 & 2 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 2 & 6 & 21 \\ 0 & 2 & 2 & 5 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$

Exercice 28 [02541] [Correction]

Soit G une partie de $\mathcal{M}_n(\mathbb{R})$ non réduite à la matrice nulle.

On suppose que (G, \times) est un groupe. Montrer qu'il existe $r \in \mathbb{N}^*$ tel que le groupe (G, \times) soit isomorphe à un sous-groupe de $(\mathrm{GL}_r(\mathbb{R}), \times)$.

Etude théorique des éléments propres d'un endomorphisme

Exercice 29 [00763] [Correction]

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie. Montrer

$$0 \notin \operatorname{sp}(f) \Leftrightarrow f \text{ surjectif}$$

Exercice 30 [00762] [Correction]

Soient f un endomorphisme d'un \mathbb{K} -espace vectoriel et $n \in \mathbb{N}^*$. On suppose que $0 \in \operatorname{sp}(f^n)$.

Montrer que $0 \in \operatorname{sp}(f)$.

Exercice 31 [00764] [Correction]

Soit u un automorphisme d'un $\mathbb{K}\text{-espace}$ vectoriel E .

Etablir

$$\mathrm{Sp}u^{-1} = \{\lambda^{-1}/\lambda \in \mathrm{Sp}u\}$$

Exercice 32 [00765] [Correction]

Soient E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$, $a \in GL(E)$ et $v = a \circ u \circ a^{-1}$. Comparer Spu et Spv d'une part, $E_{\lambda}(u)$ et $E_{\lambda}(v)$ d'autre part.

Exercice 33 [00766] [Correction]

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E tel que tout vecteur non nul en soit vecteur propre.

Montrer que u est une homothétie vectorielle.

Exercice 34 [00042] [Correction]

Soient u, v deux endomorphismes d'un espace vectoriel.

- a) Si $\lambda \neq 0$ est valeur propre de $u \circ v$, montrer qu'il l'est aussi de $v \circ u$.
- b) Pour $P \in E = \mathbb{R}[X]$, on pose

$$u(P) = P'$$
 et $v(P) = \int_0^X P(t) dt$

ce qui définit des endomorphismes de E. Déterminer

$$\ker(u \circ v)$$
 et $\ker(v \circ u)$

c) Montrer que la propriété de la première question reste valable pour $\lambda=0$ si l'espace E est de dimension finie.

Exercice 35 [02544] [Correction]

Soient u et v deux endomorphismes d'un \mathbb{R} -espace vectoriel E de dimension finie. Montrer que si λ est valeur propre de $u \circ v$ alors λ est aussi valeur propre de $v \circ u$.

Crochet de Lie

Exercice 36 [00775] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ vérifiant AB - BA = A.

- a) Calculer $A^kB BA^k$ pour $k \in \mathbb{N}$.
- b) A quelle condition la matrice A^k est-elle vecteur propre de l'endomorphisme $M \mapsto MB BM$ de $\mathcal{M}_n(\mathbb{R})$?
- c) En déduire que la matrice A est nilpotente.

Exercice 37 [02719] [Correction]

Soient f et g deux endomorphismes d'un \mathbb{C} -espace vectoriel E de dimension finie $n\geqslant 1$ tels que

$$f \circ g - g \circ f = f$$

- a) Montrer que f est nilpotent.
- b) On suppose $f^{n-1} \neq 0$. Montrer qu'il existe une base e de E et $\lambda \in \mathbb{C}$ tels que :

$$\mathrm{Mat}_e f = \left(egin{array}{cccc} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ (0) & & & 0 \end{array} \right)$$

 $_{
m et}$

$$Mat_e g = diag(\lambda, \lambda + 1, \dots, \lambda + n - 1)$$

Exercice 38 [02441] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie non nulle, u, v dans $\mathcal{L}(E)$ et a, b dans \mathbb{C} . On suppose

$$u \circ v - v \circ u = au + bv$$

a) On étudie le cas a = b = 0.

Montrer que u et v ont un vecteur propre en commun.

b) On étudie le cas $a \neq 0$, b = 0.

Montrer que u est non inversible.

Calculer $u^n \circ v - v \circ u^n$ et montrer que u est nilpotent.

Conclure que u et v ont un vecteur propre en commun.

c) On étudie le cas $a, b \neq 0$.

Montrer que u et v ont un vecteur propre en commun.

Exercice 39 [02868] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie non nulle, $(a,b) \in \mathbb{C}^2$, f et g dans $\mathcal{L}(E)$ tels que

$$f \circ g - g \circ f = af + bg$$

Montrer que f et g ont un vecteur propre commun.

Exercice 40 [02395] [Correction]

Soit E un espace vectoriel complexe de dimension finie non nulle. Soient u et v des endomorphismes de E; on pose [u,v]=uv-vu.

- a) On suppose [u, v] = 0. Montrer que u et v sont cotrigonalisables.
- b) On suppose $[u, v] = \lambda u$ avec $\lambda \in \mathbb{C}^*$. Montrer que u est nilpotent et que u et v sont cotrigonalisables.
- c) On suppose l'existence de complexes α et β tels que $[u,v]=\alpha u+\beta v.$ Montrer que u et v sont cotrigonalisables.

Exercice 41 [00829] [Correction]

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E tels que $f\circ g-g\circ f=I.$

- a) Montrer que, pour tout entier $n \ge 1$, on a $f^n \circ g g \circ f^n = nf^{n-1}$.
- b) En dimension finie non nulle, montrer qu'il n'existe pas deux endomorphismes f et g tels que $f \circ g g \circ f = I$.
- c) Montrer que dans $E=\mathbb{K}\left[X\right]$ les endomorphismes f et g définis par f(P)=P' et g(P)=XP conviennent.

Exercice 42 [00828] [Correction]

Soient E un espace vectoriel réel de dimension finie, f et g deux endomorphismes de E vérifiant

$$f \circ q - q \circ f = f$$

a) Calculer

$$f^n \circ g - g \circ f^n$$

- b) Soit P un polynôme. Montrer que si P(f) = 0 alors $f \circ P'(f) = 0$.
- c) En déduire que f est un endomorphisme nilpotent.

Exercice 43 [03031] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On considère l'endomorphisme T de $\mathcal{M}_n(\mathbb{C})$ défini par

$$T(M) = AM - MA$$

a) On suppose que la matrice A est nilpotente.

Montrer que l'endomorphisme T est aussi nilpotent.

b) Réciproque?

Exercice 44 [03374] [Correction]

Soient $A, B, C \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$AB - BA = C$$

On suppose en outre que C commute avec les matrices A et B.

- a) On suppose que A et diagonalisable. Montrer que la matrice C est nulle.
- b) On suppose que la matrice C est diagonalisable. Montrer à nouveau de que la matrice C est nulle.

Exercice 45 [04105] [Correction]

On fixe $A \in \mathcal{M}_p(\mathbb{R})$ et on considère $\Delta : M \in \mathcal{M}_p(\mathbb{R}) \mapsto AM - MA$.

a) Prouver que Δ est un endomorphisme de $\mathcal{M}_p(\mathbb{R})$ et que :

$$\forall n \in \mathbb{N}^{\star}, \forall (M, N) \in \mathcal{M}_{p}(\mathbb{R})^{2}, \Delta^{n}\left(MN\right) = \sum_{k=0}^{n} \binom{n}{k} \Delta^{k}(M) \Delta^{n-k}(N)$$

b) On suppose que $B = \Delta(H)$ commute avec A. Montrer :

$$\Delta^{2}(H) = 0 \text{ et } \Delta^{n+1}(H^{n}) = 0$$

Vérifier $\Delta^n(H^n) = n!B^n$.

- c) Soit $\|.\|$ une norme sur $\mathcal{M}_p(\mathbb{R})$. Montrer que $\|B^n\|^{1/n} \xrightarrow[n \to +\infty]{} 0$.
- d) En déduire que la matrice B est nilpotente.

Exercice 46 [04107] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie non nulle, u et v deux endomorphismes de E.

- a) On suppose dans cette question et dans la suivante que $u \circ v v \circ u = u$. Montrer que $\ker(u)$ est stable par v.
- b) Montrer que $\ker(u) \neq \{0\}$.

Indice: On pourra raisonner par l'absurde et utiliser la trace.

En déduire que u et v ont un vecteur propre commun.

c) On suppose maintenant que $u \circ v - v \circ u \in \text{Vect}(u, v)$

Montrer qu'il existe une base de E dans la quelle les matrices de u et v sont triangulaires supérieures.

Eléments propres d'un endomorphisme

Exercice 47 [00768] [Correction]

Soient $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et D l'endomorphisme de E qui à f associe sa dérivée f'. Déterminer les valeurs propres de D ainsi que les sous-espaces propres associés.

Exercice 48 [03126] [Correction]

Soient $E = \mathbb{C}^{\mathbb{N}}$ et $f : E \to E$ l'application qui transforme une suite $u = (u_n)$ en $v = (v_n)$ définie par

$$v_0 = u_0 \text{ et } \forall n \in \mathbb{N}^*, v_n = \frac{u_n + u_{n-1}}{2}$$

Déterminer les valeurs propres et les vecteurs propres de f.

Exercice 49 [00770] [Correction]

Soient E l'espace des suites réelles convergeant vers 0 et $\Delta:E\to E$ l'endomorphisme défini par

$$\Delta(u)(n) = u(n+1) - u(n)$$

Déterminer les valeurs propres de Δ .

Exercice 50 [00769] [Correction]

Soient $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ et I l'endomorphisme de E qui à $f \in E$ associe sa primitive qui s'annule en 0.

Déterminer les valeurs propres de I.

Exercice 51 [03467] [Correction]

Soit E le \mathbb{R} -espace vectoriel des fonctions continues de $[0, +\infty[$ vers \mathbb{R} convergeant en $+\infty$.

Soit T l'endomorphisme de E donné par

$$\forall x \in [0, +\infty[, T(f)(x) = f(x+1)]$$

Déterminer les valeurs propres de T et les vecteurs propres associés.

Exercice 52 [00771] [Correction]

Soit E le sous-espace vectoriel des fonctions de $\mathcal{C}([0, +\infty[\mathbb{R})$ s'annulant en 0. Pour tout $f \in E$, on définit $\varphi(f) : [0, +\infty[\to \mathbb{R}$ par

$$\varphi(f)(0) = 0$$
 et $\varphi(f)(x) = \frac{1}{x} \int_0^x f(t) dt$ pour $x > 0$

- a) Montrer que $\varphi(f) \in E$ puis que φ est un endomorphisme de E.
- b) Déterminer les éléments propres de φ .

Exercice 53 [03435] [Correction]

Soit E l'espace vectoriel des fonctions continues de $[0, +\infty[$ vers \mathbb{R} . Pour tout $f \in E$, on définit $T(f) :]0, +\infty[\to \mathbb{R}$ par

$$T(f)(x) = \frac{1}{x} \int_0^x f(t) dt \text{ pour } x > 0$$

- a) Montrer que la fonction T(f) se prolonge par continuité en 0 et qu'alors T est un endomorphisme de E.
- b) Déterminer les éléments propres de T.

Exercice 54 [03063] [Correction]

Soit E l'espace des fonctions f de classe C^1 de $[0, +\infty[$ vers \mathbb{R} vérifiant f(0) = 0. Pour un élément f de E on pose T(f) la fonction définie par

$$T(f)(x) = \int_0^x \frac{f(t)}{t} dt$$

Montrer que T est un endomorphisme de E et trouver ses valeurs propres.

Exercice 55 [02700] [Correction]

Soit $E = \mathcal{C}([0,1], \mathbb{R})$. Si $f \in E$ on pose

$$T(f): x \in [0,1] \mapsto \int_0^1 \min(x,t) f(t) \,\mathrm{d}t$$

- a) Vérifier que T est un endomorphisme de E.
- b) Déterminer les valeurs propres et les vecteurs propres de T.

Exercice 56 [02577] [Correction]

a) Montrer que Φ , qui à P associe

$$(X^2 - 1)P'(X) - (4X + 1)P(X)$$

est un endomorphisme de $\mathbb{R}_4[X]$.

b) Résoudre l'équation différentielle

$$y' = \left(\frac{5-\lambda}{2(x-1)} + \frac{3+\lambda}{2(x+1)}\right)y$$

c) En déduire les valeurs propres et les vecteurs propres de Φ .

Exercice 57 [03125] [Correction]

Déterminer valeurs propres et vecteurs propres de l'endomorphisme φ de $\mathbb{R}_n[X]$ défini par

$$\varphi: P \mapsto (X^2 - 1)P' - nXP$$

Exercice 58 [02511] [Correction]

Soit $a \in \mathbb{R}$ et $n \geqslant 2$.

- a) Montrer que $\phi(P)(X) = (X a) (P'(X) P'(a)) 2(P(X) P(a))$ définit un endomorphisme de $\mathbb{R}_n[X]$.
- b) A l'aide de la formule de Taylor, déterminer l'image et le noyau de ϕ .
- c) Trouver ses éléments propres. L'endomorphisme est-il diagonalisable?

Exercice 59 [03187] [Correction]

a) Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel de dimension finie. Si a est valeur propre de f, de multiplicité m, et si E(f,a) est le sous-espace propre attaché, montrer

$$1 \leqslant \dim E(f, a) \leqslant m$$

b) Soit

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{array}\right)$$

Déterminer simplement les valeurs propres de A. La matrice A est-elle diagonalisable?

Polynômes caractéristiques

Exercice 60 [00778] [Correction]

- a) Montrer que deux matrices semblables ont le même polynôme caractéristique.
- b) Réciproque?

Exercice 61 [00779] [Correction]

Soit F un sous-espace vectoriel stable par un endomorphisme u d'un \mathbb{K} -espace vectoriel E de dimension finie.

Etablir que le polynôme caractéristique de l'endomorphisme induit par u sur F divise le polynôme caractéristique de u.

Exercice 62 [00781] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On désire établir l'égalité des polynômes caractéristiques

$$\chi_{AB} = \chi_{BA}$$

- a) Etablir l'égalité quand $A \in GL_n(\mathbb{C})$.
- b) Pour $A \notin \mathrm{GL}_n(\mathbb{C})$, justifier que pour $p \in \mathbb{N}$ assez grand $A + \frac{1}{p}I_n \in \mathrm{GL}_n(\mathbb{C})$. En déduire que l'égalité est encore vraie pour A non inversible.

Exercice 63 [01272] [Correction]

Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $B \in \mathcal{M}_{p,n}(\mathbb{K})$ et $\lambda \in \mathbb{K}$. En multipliant à droite et à gauche la matrice

$$M = \begin{pmatrix} \lambda I_n & A \\ B & I_p \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{K})$$

par des matrices triangulaires par blocs bien choisies, établir

$$\lambda^p \chi_{AB}(\lambda) = \lambda^n \chi_{BA}(\lambda)$$

Exercice 64 [02697] [Correction]

Soit $(A, B) \in \mathcal{M}_{p,q}(\mathbb{R}) \times \mathcal{M}_{q,p}(\mathbb{R})$. Montrer que

$$X^q \chi_{AB}(X) = X^p \chi_{BA}(X)$$

Indice : Commencer par le cas où

$$A = \left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right)$$

Exercice 65 [01109] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ et $p \in \mathbb{N}^*$. Etablir

$$\chi_{(AB)^p} = \chi_{(BA)^p}$$

Exercice 66 [00780] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ inversible de polynôme caractéristique χ_A . Etablir que pour tout $x \neq 0$,

$$\chi_{A^{-1}}(x) = \frac{x^n}{\chi_A(0)} \chi_A(1/x)$$

Exercice 67 [02901] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer

$$\chi_{A\bar{A}} \in \mathbb{R}[X]$$

Exercice 68 [02698] [Correction]

- a) Si $P \in \mathbb{Z}[X]$ est unitaire de degré n, existe-t-il une matrice $A \in \mathcal{M}_n(\mathbb{Z})$ de polynôme caractéristique $(-1)^n P(X)$?
- b) Soient $(\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$ et le polynôme

$$P = \prod_{i=1}^{n} (X - \lambda_i)$$

On suppose $P \in \mathbb{Z}[X]$. Montrer que pour tout $q \in \mathbb{N}^{\star}$ le polynôme

$$P_q = \prod_{i=1}^n \left(X - \lambda_i^q \right)$$

appartient encore à $\mathbb{Z}[X]$.

c) Soit P dans $\mathbb{Z}[X]$ unitaire dont les racines complexes sont de modules ≤ 1 . Montrer que les racines non nulles de P sont des racines de l'unité.

Exercice 69 [03213] [Correction]

Soient $n \ge 2$ et $f \in \mathcal{L}(\mathbb{C}^n)$ endomorphisme de rang 2.

Déterminer le polynôme caractéristique de f en fonction de $\operatorname{tr} f$ et $\operatorname{tr} f^2$.

Exercice 70 [02699] [Correction]

Soient A et B dans $\mathcal{M}_n(\mathbb{K})$ ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}).

- a) Comparer SpB et Sp tB .
- b) Soit $C \in \mathcal{M}_n(\mathbb{K})$. Montrer que s'il existe λ pour lequel $AC = \lambda C$, alors $\text{Im} C \subset \ker(A \lambda I_n)$.
- c) Soit λ une valeur propre commune à A et B. Montrer qu'il existe $C \in \mathcal{M}_n(\mathbb{K})$, $C \neq 0$, telle que $AC = CB = \lambda C$.
- d) On suppose l'existence de $C \in \mathcal{M}_n(\mathbb{K})$ avec $\operatorname{rg} C = r$ et AC = CB. Montrer que le PGCD des polynômes caractéristiques de A et B est de degré $\geq r$.
- e) Etudier la réciproque de d).

Exercice 71 [03476] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe M dans $\mathcal{M}_n(\mathbb{R})$ de rang r tel que

$$AM = MB$$

Montrer que $\deg(\chi_A \wedge \chi_B) \geqslant r$. Soient A et B dans $\mathcal{M}_n(\mathbb{K})$ ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}).

Calcul de polynômes caractéristiques

Exercice 72 [00782] [Correction]

Calculer le polynôme caractéristique de la matrice

$$\begin{pmatrix}
0 & 1 & & 0 \\
\vdots & \ddots & \ddots & \\
0 & \cdots & 0 & 1 \\
a_0 & a_1 & \cdots & a_{n-1}
\end{pmatrix}$$

Exercice 73 [00784] [Correction]

Soient

$$A_n = \begin{pmatrix} 0 & 1 & & 0 \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ 0 & & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}) \text{ et } P_n(x) = \det(xI_n - A_n)$$

a) Montrer

$$P_n(x) = xP_{n-1}(x) - P_{n-2}(x)$$

Calculer $P_1(x)$ et $P_2(x)$.

b) Pour tout $x \in]-2, 2[$, on pose $x = 2\cos\alpha$ avec $\alpha \in]0, \pi[$. Montrer que

$$P_n(x) = \frac{\sin((n+1)\alpha)}{\sin \alpha}$$

c) En déduire que $P_n(x)$ admet n racines puis que A_n est diagonalisable.

Exercice 74 [02493] [Correction]

Soient $a_1, \ldots, a_n \in \mathbb{C}^*$, tous distincts et $P(x) = \det(A + xI_n)$ avec

$$A = \begin{pmatrix} 0 & a_2 & \cdots & a_n \\ a_1 & 0 & & \vdots \\ \vdots & & \ddots & a_n \\ a_1 & \cdots & a_{n-1} & 0 \end{pmatrix}$$

a) Calculer $P(a_i)$ et décomposer en éléments simples la fraction

$$\frac{P(x)}{\prod_{i=1}^{n} (x - a_i)}$$

b) En déduire $\det A$.

Exercice 75 [00785] [Correction]

Soient $a_1, \ldots, a_n \in \mathbb{C}^*$ deux à deux distincts. On pose

$$P(x) = \det(A + xI_n) \text{ avec } A = \begin{pmatrix} 0 & a_2 & \dots & a_n \\ a_1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_n \\ a_1 & \cdots & a_{n-1} & 0 \end{pmatrix}$$

- a) Calculer $P(a_i)$.
- b) Justifier que P est un polynôme unitaire de degré n.
- c) Former la décomposition en éléments simples de la fraction rationnelle

$$\frac{P(X)}{\prod_{i=1}^{n} (X - a_i)}$$

d) En déduire le déterminant de $A + I_n$.

Applications du polynôme caractéristique

Exercice 76 [02696] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. Montrer que AB et BA ont même valeurs propres.

Exercice 77 [03083] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{Sp} A \subset \mathbb{R}^+$.

Montrer

 $\det A \geqslant 0$

Exercice 78 [03121] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. Etablir

$$\chi_A(B) \in \mathrm{GL}_n(\mathbb{C}) \Leftrightarrow \mathrm{Sp}A \cap \mathrm{Sp}B = \emptyset$$

Exercice 79 [03991] [Correction]

a) Soient $B, C \in \mathcal{M}_n(\mathbb{C})$ semblables

Pour $x \in \mathbb{C}$, montrer que les matrices $xI_n - B$ et $xI_n - C$ sont semblables.

En est-il de même de $(xI_n - B)^{-1}$ et $(xI_n - C)^{-1}$?

b) Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $P_A(x) = \det(xI_n - A)$ et P'_A le polynôme dérivé de P_A .

On suppose que x n'est pas valeur propre de A, montrer

$$\operatorname{tr}(xI_n - A)^{-1} = \frac{P_A'(x)}{P_A(x)}$$

Existence de valeurs propres dans un espace complexe

Exercice 80 [00786] [Correction]

Soit E un \mathbb{C} -espace vectoriel de dimension finie.

- a) Justifier que tout endomorphisme de ${\cal E}$ possède au moins une valeur propre
- b) Observer que l'endomorphisme $P(X) \mapsto (X-1)P(X)$ de $\mathbb{C}[X]$ n'a pas de valeurs propres.

Exercice 81 [00502] [Correction]

- a) Rappeler pour quoi un endomorphisme d'un \mathbb{C} -espace vectoriel de dimension finie non nulle ad met au moins un vecteur propre.
- b) Soient u,v deux endomorphismes d'un \mathbb{C} -espace vectoriel E de dimension finie non nulle.

On suppose

$$u \circ v = v \circ u$$

Montrer que u et v ont un vecteur propre en commun.

Exercice 82 [00787] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant AB = BA.

Montrer que A et B ont un vecteur propre en commun.

Exercice 83 [00788] [Correction]

Montrer que $A, B \in \mathcal{M}_n(\mathbb{C})$ ont une valeur propre en commun si, et seulement si, il existe $U \in \mathcal{M}_n(\mathbb{C})$ non nulle vérifiant UA = BU.

Exercice 84 [03795] [Correction]

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ vérifie la propriété (P) si

$$\exists M \in \mathcal{M}_n(\mathbb{K}), \forall \lambda \in \mathbb{K}, \det(M + \lambda A) \neq 0$$

- a) Rappeler pourquoi une matrice de $\mathcal{M}_n(\mathbb{C})$ admet au moins une valeur propre.
- b) Soit T une matrice triangulaire supérieure de diagonale nulle.

Calculer $\det(I_n + \lambda T)$. En déduire que T vérifie la propriété (P)

c) Déterminer le rang de la matrice

$$T_r = \begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

d) Soient A vérifiant (P) et B une matrice de même rang que A; montrer

$$\exists (P,Q) \in \mathrm{GL}_n(\mathbb{K})^2, B = PAQ$$

et en déduire que B vérifie (P).

- e) Conclure que, dans $\mathcal{M}_n(\mathbb{C})$, les matrices non inversibles vérifient (P) et que ce sont les seules.
- f) Que dire des cette propriété dans le cas $\mathcal{M}_n(\mathbb{R})$ (on distinguera n pair et n impair)?

Exercice 85 [04073] [Correction]

Soient u, v deux endomorphismes d'un \mathbb{C} -espace vectoriel E de dimension finie non nulle vérifiant $u \circ v = v \circ u$. Montrer que u et v ont un vecteur propre en commun.

Eléments propres d'une matrice

Exercice 86 [00772] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant $\operatorname{rg}(A) = 1$.

Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $A^2 = \lambda A$ et que ce scalaire λ est valeur propre de A.

Exercice 87 [00773] [Correction]

Pour $A \in \mathcal{M}_n(\mathbb{R})$, on pose

$$||A|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

Montrer que

$$Sp(A) \subset [-\|A\|, \|A\|]$$

Exercice 88 [00774] [Correction]

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ vérifiant pour tout $i, j \in \{1, ..., n\}$ $a_{i,j} > 0$ et pour tout $i \in \{1, ..., n\}$, $\sum_{j=1}^n a_{i,j} = 1$.

- a) Montrer que $1 \in \text{Sp}(A)$.
- b) Justifier que si $\lambda \in \mathbb{C}$ est valeur propre de A alors $|\lambda| \leq 1$.
- c) Observer que si $\lambda \in \mathbb{C}$ est valeur propre de A et vérifie $|\lambda| = 1$ alors $\lambda = 1$.

Exercice 89 [03280] [Correction]

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ vérifiant pour tout $i, j \in \{1, ..., n\}$ $a_{i,j} \in \mathbb{R}^+$ et pour tout $i \in \{1, ..., n\}$, $\sum_{j=1}^n a_{i,j} = 1$.

- a) Montrer que $1 \in \operatorname{Sp}(A)$.
- b) Justifier que si $\lambda \in \mathbb{C}$ est valeur propre de A alors $|\lambda| \leq 1$.
- c) Observer que si $\lambda \in \mathbb{C}$ est valeur propre de A et vérifie $|\lambda|=1$ alors λ est une racine de l'unité.

Exercice 90 [02729] [Correction]

Soit la matrice $A \in \mathcal{M}_n(\mathbb{R})$ donnée par $A = (\min(i,j))_{1 \leq i,j \leq n}$.

- a) Trouver une matrice triangulaire inférieure unité L et une matrice triangulaire supérieure U telle que A=LU.
- b) Exprimer A^{-1} à l'aide de

$$N = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ (0) & & & 0 \end{pmatrix}$$

c) Montrer que $\operatorname{Sp} A^{-1} \subset [0, 4]$.

Exercice 91 [02704] [Correction]

Déterminer les valeurs propres de la matrice de $\mathcal{M}_n(\mathbb{R})$ suivante

$$M = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & & (0) \\ \vdots & & \ddots & \\ 1 & (0) & & 1 \end{pmatrix}$$

Exercice 92 [02861] [Correction]

Déterminer les valeurs propres de la matrice

$$\begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

Exercice 93 [03173] [Correction]

Soit $n \in \mathbb{N}$, $n \ge 2$. Déterminer les valeurs propres de la comatrice de $A \in \mathcal{M}_n(\mathbb{C})$. On commencera par étudier le cas où la matrice A est inversible.

Exercice 94 [03316] [Correction]

Soient $n \geqslant 3$ et

$$A = \begin{pmatrix} 0 & (0) & 1 \\ 1 & \ddots & & \vdots \\ \vdots & & \ddots & 1 \\ 1 & (0) & & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

- a) Calculer les rangs de A et A^2 .
- b) Soit f l'endomorphisme de \mathbb{R}^n canoniquement représenté par la matrice A. Montrer

$$\ker f \oplus \operatorname{Im} f = \mathbb{R}^n$$

c) En déduire que la matrice A est semblable à une matrice de la forme

$$\begin{pmatrix}
0 & & & (0) \\
& \ddots & & \\
& & 0 & \\
(0) & & B
\end{pmatrix} \text{ avec } B \in GL_2(\mathbb{R})$$

d) Calculer trB et trB^2 .

En déduire les valeurs propres de B puis celles de A.

e) La matrice A est-elle diagonalisable?

Exercice 95 [03672] [Correction]

Soit $(a_0, \ldots, a_{p-1}) \in \mathbb{C}^p$. On suppose que 1 est racine simple de

$$P(X) = X^{p} - (a_{p-1}X^{p-1} + \dots + a_{1}X + a_{0})$$

On suppose la convergence d'une suite $(u_n)_{n\in\mathbb{N}}$ déterminée par ses p premiers termes u_0,\ldots,u_{p-1} et la relation de récurrence

$$u_{n+p} = a_{p-1}u_{n+p-1} + \dots + a_1u_{n+1} + a_0u_n$$

Déterminer la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 96 [02543] [Correction]

Expliquer brièvement pourquoi

t
com $(A)A = \det(A)I_{n}$

On suppose que A admet n valeurs propres distinctes; que vaut $\det(A)$? Que représente un vecteur propre de A pour $^t\mathrm{com}(A)$?

On suppose de plus que A n'est pas inversible. Déterminer

 $\dim \ker^t \operatorname{com} A$

Prouver que t comA n'admet que deux valeurs propres, les expliciter.

Exercice 97 [02613] [Correction]

Soient

$$A_n = \begin{pmatrix} 0 & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

et χ_n son polynôme caractéristique.

a) Calculer

$$u_n = \chi_n(2\cos\alpha)$$

pour tout $\alpha \in]0, \pi[$.

b) Déterminer les valeurs propres de A_n .

Quelle est la dimension des sous-espaces propres de A_n ?

c) Déterminer les sous-espaces propres de A_n

Indice : on pourra, pour λ valeur propre de A_n , chercher

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C})$$

vérifiant $AX = \lambda X$ et poser $x_0 = x_{n+1} = 0$.

Eléments propres d'un endomorphisme matriciel

Exercice 98 [00776] [Correction]

Soient $n \in \mathbb{N}^*$ et $E = \mathcal{M}_n(\mathbb{R})$. Pour $A \in E$, on introduit $u : E \to E$ défini par

$$u(M) = AM$$

Montrer que A et u ont les mêmes valeurs propres et préciser les sous-espaces propres de u en fonction de ceux de A.

Exercice 99 [00777] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{C})$ et Φ_A l'endomorphisme de $\mathcal{M}_n(\mathbb{C})$ définie par $\Phi_A(M) = AM$.

- a) Montrer que les valeurs propres de Φ_A sont les valeurs propres de A.
- b) Déterminer les valeurs propres de $\Psi_A: M \mapsto MA$.

Exercice 100 [00767] [Correction]

On considère les matrices réelles

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right) \text{ et } M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

- a) Calculer AM MA.
- b) Déterminer les éléments propres de l'endomorphisme $M \mapsto AM MA$.

Diagonalisabilité d'une matrice par similitude

Exercice 101 [00796] [Correction]

Montrer que si A est diagonalisable alors tA l'est aussi.

Exercice 102 [01673] [Correction]

Soient $A \in GL_n(\mathbb{K})$ et $B \in \mathcal{M}_n(\mathbb{K})$.

On suppose la matrice AB diagonalisable. Montrer que BA est diagonalisable.

Diagonalisabilité d'une matrice par l'étude des éléments propres

Exercice 103 [00789] [Correction]

Soient $\alpha \in \mathbb{R}$ et

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \in \mathcal{M}_2(\mathbb{K}) \text{ et } B = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$

- a) On suppose $\mathbb{K} = \mathbb{C}$. La matrice A est-elle diagonalisable?
- b) On suppose $\mathbb{K} = \mathbb{R}$. La matrice A est-elle diagonalisable?
- c) Mêmes questions avec B.

Exercice 104 [00790] [Correction]

Soient $a, b, c \in \mathbb{R}$. La matrice

$$M = \begin{pmatrix} 0 & -b & c \\ a & 0 & -c \\ -a & b & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

est-elle diagonalisable?

Exercice 105 [00792] [Correction]

Soient $a, b \in \mathbb{R}^*$ tels que $|a| \neq |b|$ et

$$A = \begin{pmatrix} a & b & a & \cdots & b \\ b & a & b & \cdots & a \\ a & b & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & a & b & \cdots & a \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R}) \text{ (avec } n \geqslant 2)$$

- a) Calculer le rang de A. En déduire que 0 est valeur propre de A et déterminer la dimension du sous-espace propre associé.
- b) Déterminer deux vecteurs propres non colinéaires et en déduire que A est diagonalisable.

Exercice 106 [03123] [Correction]

Monter que la matrice suivante est diagonalisable

$$A = \begin{pmatrix} 0 & 1 & & & (0) \\ n & \ddots & 2 & & \\ & n-1 & \ddots & \ddots & \\ & & \ddots & \ddots & n \\ (0) & & 1 & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{C})$$

(indice : on pourra interpréter A comme la matrice d'un endomorphisme de $\mathbb{C}_n[X]$

Exercice 107 [03283] [Correction]

a) Exprimer le polynôme caractéristique de la matrice

$$M = \begin{pmatrix} 0 & 1 & & 0 \\ \vdots & \ddots & \ddots & \\ 0 & \cdots & 0 & 1 \\ a_0 & a_1 & \cdots & a_{n-1} \end{pmatrix}$$

en fonction du polynôme

$$P(X) = X^n - (a_{n-1}X^{n-1} + \dots + a_1X + a_0)$$

- b) Soit λ une racine de P. Déterminer le sous-espace propre de M associé à la valeur propre λ .
- c) A quelle condition la matrice M est-elle diagonalisable?

Exercice 108 [03767] [Correction]

Considérons la matrice A suivante :

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & k & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{C})$$

- 1. On suppose k réel, la matrice A est-elle diagonalisable dans $\mathcal{M}_4(\mathbb{R})$? (sans calculs):
- 2.a) Déterminer le rang de A.
- 2.b) Donner la raison pour laquelle le polynôme caractéristique de ${\cal A}$ est de la forme

$$X^2(X-u_1)(X-u_2)$$

avec u_1, u_2 appartenant à \mathbb{C}^* et vérifiant

$$u_1 + u_2 = k$$
 et $u_1^2 + u_2^2 = k^2 + 6$

- 2.c) Etudier les éléments propres dans le cas où $u_1 = u_2$.
- 2.d) En déduire les valeurs de k pour que A soit diagonalisable dans $\mathcal{M}_4(\mathbb{C})$.

Exercice 109 [03433] [Correction]

Pour quelle(s) valeurs de $x \in \mathbb{R}$, la matrice suivante n'est-elle pas diagonalisable?

$$A = \begin{pmatrix} -2 - x & 5 + x & x \\ x & -2 - x & -x \\ -5 & 5 & 3 \end{pmatrix}$$

Exercice 110 [02536] [Correction]

Soient a, b, c, d quatre nombres complexes avec $a^2 + b^2 \neq 0$ et

$$A = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix}$$

- a) Calculer $A^t A$, det A et montrer que rg(A) = 2 ou 4.
- b) On pose $\alpha^2 = b^2 + c^2 + d^2$ supposé non nul. Montrer que A est diagonalisable.

Exercice 111 [02522] [Correction]

Soit $(a_1,\ldots,a_{n-1})\in\mathbb{C}^{n-1}$.

a) Quel est le rang de $A \in \mathcal{M}_n(\mathbb{C})$ définie par

$$A = \begin{pmatrix} 0 & \cdots & 0 & a_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & a_{n-1} \\ a_1 & \cdots & a_{n-1} & 0 \end{pmatrix} ?$$

- b) Avec la trace, que peut-on dire des valeurs propres?
- c) A est-elle diagonalisable?

Exercice 112 [00798] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $B = \begin{pmatrix} O & I_n \\ A & O \end{pmatrix}$.

- a) Etudier les valeurs propres de B en fonction de celles de A.
- b) On suppose A diagonalisable. B est-elle diagonalisable?

Exercice 113 [00797] [Correction]

Soient $A_1 \in \mathcal{M}_p(\mathbb{K}), A_2 \in \mathcal{M}_q(\mathbb{K})$ et $A \in \mathcal{M}_{p+q}(\mathbb{K})$ définie par

$$A = \left(\begin{array}{cc} A_1 & O \\ O & A_2 \end{array}\right)$$

Montrer que A est diagonalisable si, et seulement si, A_1 et A_2 le sont.

Diagonalisabilité des matrices de rang 1

Exercice 114 [00793] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\operatorname{rg} A = 1$.

Etablir

A diagonalisable si, et seulement si, $\mathrm{tr} A \neq 0$

Exercice 115 [00794] [Correction]

Soient $X, Y \in \mathcal{M}_{n,1}(\mathbb{K})$ non nuls.

A quelle condition la matrice X^tY est-elle diagonalisable?

Exercice 116 [02391] [Correction]

Soient $\mathbb K$ un sous-corps de $\mathbb C$ et

$$J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

Montrer que J est diagonalisable.

Exercice 117 [02702] [Correction]

Soit $(a_1, \ldots, a_n) \in \mathbb{C}^n$. La matrice $(a_i a_j)_{1 \leq i, j \leq n}$ est-elle diagonalisable?

Exercice 118 [00791] [Correction]

Parmi les matrices élémentaires $E_{i,j}$ de $\mathcal{M}_n(\mathbb{K})$, lesquelles sont diagonalisables?

Exercice 119 [02595] [Correction]

Soient $(a_1, \ldots, a_n) \in (\mathbb{R}_+^*)^n$ et

$$N = \begin{pmatrix} a_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 & \cdots & a_2 \\ \vdots & \vdots & & \vdots \\ a_n & a_n & \cdots & a_n \end{pmatrix}$$

Calculer N^2 , la matrice N est-elle diagonalisable? Montrer que $M = 2N + I_n$ est inversible et calculer M^{-1} .

Diagonalisation d'une matrice

Exercice 120 [02706] [Correction]

On pose

$$M(a,b) = \begin{pmatrix} a^2 & ab & ab & b^2 \\ ab & a^2 & b^2 & ab \\ ab & b^2 & a^2 & ab \\ b^2 & ab & ab & a^2 \end{pmatrix}$$

pour tous a, b réels.

- a) Ces matrices sont-elles simultanément diagonalisables?
- b) Etudier et représenter graphiquement l'ensemble des $(a, b) \in \mathbb{R}^2$ tel que $M(a, b)^n$ tend vers 0 quand n tend vers ∞ .

Exercice 121 [02705] [Correction] Soient a, b deux réels et les matrices

$$A = \begin{pmatrix} a & b & \cdots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix} \text{ et } B = \begin{pmatrix} b & \cdots & b & a \\ \vdots & \ddots & a & b \\ b & \ddots & \ddots & \vdots \\ a & b & \cdots & b \end{pmatrix}$$

Réduire ces deux matrices.

Exercice 122 [02703] [Correction] Diagonaliser les matrices de $\mathcal{M}_n(\mathbb{R})$

$$\begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ \vdots & 0 & \cdots & 0 & \vdots \\ \vdots & \vdots & & \vdots & \vdots \\ \vdots & 0 & \cdots & 0 & \vdots \\ 1 & \cdots & \cdots & \cdots & 1 \end{pmatrix}$$

Exercice 123 [03255] [Correction] Soit

$$M_n = \begin{pmatrix} 0 & & (b) \\ & \ddots & \\ (a) & & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

A quelle condition la matrice M_n est-elle diagonalisable? Déterminer alors une base de vecteurs propres

Calcul de puissances d'une matrice

Exercice 124 [00811] [Correction] Calculer A^n pour

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

Exercice 125 [00812] [Correction]

Soit

$$A = \begin{pmatrix} \cos \theta & 2\sin \theta \\ \frac{1}{2}\sin \theta & \cos \theta \end{pmatrix}$$

- a) Déterminer deux réels α, β tel que $A^2 = \alpha A + \beta I_2$.
- b) Calculer A^n pour $n \ge 1$.

Exercice 126 [00842] [Correction]

Soit

$$M = \begin{pmatrix} 0 & 1 \\ & \ddots & \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}) \text{ avec } n \geqslant 2$$

- a) Montrer que M est diagonalisable.
- b) Déterminer le polynôme minimal de M.
- c) Calculer M^p pour $p \in \mathbb{N}$.

Applications diverses de la diagonalisabilité

Exercice 127 [00813] [Correction]

a) Déterminer les valeurs propres de

$$A = \left(\begin{array}{ccc} 1 & 3 & 0 \\ 3 & -2 & -1 \\ 0 & -1 & 1 \end{array}\right)$$

b) Combien y a-t-il de matrice M telle que $M^2 = A$ dans $\mathcal{M}_n(\mathbb{C})$? dans $\mathcal{M}_n(\mathbb{R})$?

Exercice 128 [00814] [Correction]

Soit

$$A = \left(\begin{array}{cc} 5 & 3\\ 1 & 3 \end{array}\right) \in \mathcal{M}_2(\mathbb{R})$$

- a) Diagonaliser la matrice A en précisant la matrice de passage P
- b) Soit $M \in \mathcal{M}_2(\mathbb{R})$ une matrice telle que $M^2 + M = A$. Justifier que la matrice $P^{-1}MP$ est diagonale.
- c) Déterminer les solutions de l'équation $M^2 + M = A$.

Exercice 129 [00815] [Correction]

Soit pour $n \ge 2$ la matrice

$$J = \begin{pmatrix} 0 & 1 & & (0) \\ \vdots & 0 & \ddots & \\ 0 & & \ddots & 1 \\ 1 & 0 & \cdots & 0 \end{pmatrix}$$

- a) Montrer que la matrice J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$
- b) Application: calculer

$$\begin{vmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_1 \\ a_1 & \cdots & a_{n-1} & a_0 \end{vmatrix}$$

Exercice 130 [02692] [Correction]

Les matrices

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}\right) et \left(\begin{array}{ccc}
1 & 3 & 2 \\
2 & 1 & 3 \\
3 & 2 & 1
\end{array}\right)$$

sont-elles semblables?

Exercice 131 [03145] [Correction]

Soit G un sous-groupe de $(GL_n(\mathbb{R}), \times)$ vérifiant

$$\forall M \in G, M^2 = I_n$$

- a) Montrer que G est commutatif.
- b) En déduire que les éléments de G sont codiagonalisables.
- c) En déduire

$$\operatorname{Card} G \leq 2^n$$

d) Application : Montrer que s'il existe un isomorphisme entre $(GL_n(\mathbb{R}), \times)$ et $(GL_m(\mathbb{R}), \times)$ alors n = m.

Exercice 132 [02453] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ avec B diagonalisable.

Montrer

$$AB^3 = B^3A \Rightarrow AB = BA$$

Exercice 133 [03122] [Correction]

Soient $p, q \in \mathbb{N}^*$ et $A, B, M \in \mathcal{M}_n(\mathbb{C})$ avec A, B diagonalisables. Montrer

$$A^p M B^q = O_n \Rightarrow A M B = O_n$$

Exercice 134 [02980] [Correction]

Soit φ une application de $\mathcal{M}_2(\mathbb{C})$ vers \mathbb{C} vérifiant :

$$\forall A, B \in \mathcal{M}_2(\mathbb{C}), \varphi(AB) = \varphi(A)\varphi(B) \text{ et } \varphi \left(\begin{array}{cc} \lambda & 0 \\ 0 & 1 \end{array} \right) = \lambda$$

Montrer que $\varphi = \det$.

Exercice 135 [03276] [Correction]

On considère trois suites réelles $(u_n)_{n\geqslant 0}$, $(v_n)_{n\geqslant 0}$ et $(w_n)_{n\geqslant 0}$ vérifiant

$$\begin{cases} u_{n+1} = -u_n + v_n + w_n \\ v_{n+1} = u_n - v_n + w_n \\ w_{n+1} = u_n + v_n - w_n \end{cases}$$

A quelle condition sur (u_0, v_0, w_0) , ces trois suites sont-elles convergentes?

Exercice 136 [03858] [Correction]

Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que M^2 soit triangulaire supérieure à coefficients diagonaux deux à deux distincts. Montrer que M est aussi triangulaire supérieure.

Exercice 137 [03113] [Correction]

a) Soit $D \in \mathcal{M}_n(\mathbb{C})$. Déterminer l'inverse de

$$\left(\begin{array}{cc}I_n & D\\O_n & I_n\end{array}\right)$$

b) Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ diagonalisables telles que $\operatorname{Sp} A \cap \operatorname{Sp} B = \emptyset$. Montrer que pour tout matrice $C \in \mathcal{M}_n(\mathbb{C})$, les matrices suivantes sont semblables

$$\left(\begin{array}{cc} A & C \\ O_n & B \end{array}\right) \text{ et } \left(\begin{array}{cc} A & O_n \\ O_n & B \end{array}\right)$$

Exercice 138 [03270] [Correction]

a) Déterminer les entiers k pour lesquelles l'équation

$$e^{i\theta} + e^{ik\theta} = 1$$

admet au moins une solution $\theta \in \mathbb{R}$.

b) Soit S_k l'ensemble des suites réelles u telles que

$$\forall n \in \mathbb{N}, u_{n+k} = u_n + u_{n+k-1}$$

A quelle condition sur k, S_k contient-il une suite périodique non nulle.

Diagonalisabilité d'un endomorphisme par l'étude de ses éléments propres

Exercice 139 [00799] [Correction]

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie E. On suppose que

$$\operatorname{Im}(u - \operatorname{Id}_E) \cap \operatorname{Im}(u + \operatorname{Id}_E) = \{0_E\}$$

Montrer que u est diagonalisable.

Exercice 140 [00800] [Correction]

Soit $E = \mathbb{R}_n [X]$. Pour $P \in E$, on pose $\varphi(P) = P - (X+1)P'$.

- a) Justifier que φ définit un endomorphisme de $\mathbb{R}_n[X]$.
- b) Déterminer les valeurs propres de φ et justifier que φ est diagonalisable.

Exercice 141 [00801] [Correction]

Montrer que l'application

$$f: P(X) \mapsto (X^2 - 1)P''(X) + 2XP'(X)$$

est un endomorphisme de l'espace vectoriel réel $E = \mathbb{R}_n[X]$. Former la matrice de f relative à la base canonique de E. En déduire la diagonalisabilité de f ainsi que ses valeurs propres et la dimension des sous-espaces propres associés.

Exercice 142 [00802] [Correction]

Soient $E = \mathbb{R}_n[X]$ et deux réels $a \neq b$. Pour $P \in E$, on pose

$$\varphi(P) = (X - a)(X - b)P' - nXP$$

- a) Montrer que φ est un endomorphisme de E.
- b) Déterminer les valeurs propres de φ et en déduire que φ est diagonalisable.

Exercice 143 [00803] [Correction]

L'endomorphisme ϕ de $\mathcal{M}_n(\mathbb{R})$ défini par

$$\phi(M) = M + \operatorname{tr}(M).I_n$$

est-il diagonalisable?

Exercice 144 [00804] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie, $f \in \mathcal{L}(E)$ et $F \in \mathcal{L}(\mathcal{L}(E))$ définie par $F(u) = f \circ u$.

- a) Montrer que f est diagonalisable si, et seulement si, F l'est.
- b) Montrer que f et F ont les mêmes valeurs propres.
- c) Soit λ une valeur propre de f. Etablir dim $E_{\lambda}(F) = \dim E \times \dim E_{\lambda}(f)$.

Exercice 145 [03015] [Correction]

Soient E un espace vectoriel de dimension finie, un projecteur fixé de E et $\mathcal{F}:\mathcal{L}(E)\to\mathcal{L}(E)$ définie par

$$\mathcal{F}: f \mapsto \frac{1}{2} \left(f \circ p + p \circ f \right)$$

- a) \mathcal{F} est-elle linéaire?
- b) \mathcal{F} est-elle diagonalisable?
- c) Quelle est la dimension des sous-espaces propres associés?

Exercice 146 [02718] [Correction]

Soient $A \in \mathbb{R}[X]$ et $B \in \mathbb{R}[X]$ scindé à racines simples de degré n+1. Soit Φ l'endomorphisme de $\mathbb{R}_n[X]$ qui à $P \in \mathbb{R}[X]$ associe le reste de la division euclidienne de AP par B. Déterminer les éléments propres de Φ . L'endomorphisme Φ est-il diagonalisable?

Exercice 147 [03582] [Correction]

Soient A, B fixés dans $\mathbb{R}_n[X]$.

On note f l'application qui, à $P \in \mathbb{R}_n[X]$ associe le reste de la division euclidienne de AP par B.

- a) Montrer que f est un endomorphisme; est-ce un isomorphisme?
- b) On suppose dans la suite que les polynômes A et B premiers entre eux avec B scindé à racines simples; donner les valeurs propres de f.
- c) L'endomorphisme f est-il diagonalisable?

Exercice 148 [02722] [Correction]

Soit E un espace vectoriel réel de dimension finie, $f \in \mathcal{L}(E)$ tel que $f^2 = f$. Etudier les éléments propres et la diagonalisabilité de l'endomorphisme $u \mapsto fu - uf$ de $\mathcal{L}(E)$.

Exercice 149 [02723] [Correction]

Soient E un espace vectoriel réel de dimension finie et $f \in \mathcal{L}(E)$. On définit $T \in \mathcal{L}(E) \to \mathcal{L}(E)$ par

$$T(g) = f \circ g - g \circ f$$

Montrer que si f est diagonalisable, alors T est diagonalisable; si f est nilpotente, alors T est nilpotente.

Exercice 150 [03776] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie et $e=(e_1,\ldots,e_n)$ une base de E.

On considère l'endomorphisme f de E déterminé par

$$\forall k \in \{1, \dots, n\}, f(e_k) = e_k + \sum_{i=1}^n e_i$$

- a) Donner la matrice de f dans e.
- b) Déterminer les sous-espaces propres de f.
- c) L'endomorphisme f est-il diagonalisable?
- d) Calculer le déterminant de f. L'endomorphisme f est-il inversible?

Exercice 151 [03450] [Correction]

On considère un \mathbb{R} -espace vectoriel de dimension finie E, u un endomorphisme de $E, U = (u_{i,j})$ la matrice de u dans une base de $E, e_{i,j}$ les projecteurs associés à cette base et $E_{i,j}$ la matrice de ces projecteurs.

On considère φ l'endomorphisme dans $\mathcal{L}(E)$ tel que

$$\varphi(v) = u \circ v$$

- a) Montrer que φ et u ont les mêmes valeurs propres.
- b) Calculer $UE_{i,j}$ en fonction des $E_{k,j}$. En déduire qu'il existe une base de $\mathcal{L}(E)$ dans laquelle la matrice de φ est diagonale par blocs.
- c) Exprimer cette matrice.

Exercice 152 [00810] [Correction]

Soient $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et $\varphi : M \mapsto DM - MD$ endomorphisme de $\mathcal{M}_n(\mathbb{K})$.

a) Calculer $\varphi(E_{i,j})$ où $E_{i,j}$ désigne la matrice élémentaire d'indice (i,j) de $\mathcal{M}_n(\mathbb{K})$.

Quelle particularité présente la matrice de φ relativement à la base canonique de $\mathcal{M}_n(\mathbb{K})$?

b) Soit f un endomorphisme diagonalisable d'un \mathbb{K} -espace vectoriel E de dimension finie.

L'endomorphisme $\phi: u \mapsto f \circ u - u \circ f$ de $\mathcal{L}(E)$ est-il diagonalisable?

Exercice 153 [01324] [Correction]

Soient $E = \mathcal{S}_2(\mathbb{R})$,

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \mathcal{M}_2(\mathbb{R})$$

et $\Phi: \mathcal{S}_2(\mathbb{R}) \to \mathcal{S}_2(\mathbb{R})$ définie par

$$\Phi(S) = AS + S^t A$$

- a) Déterminer la matrice de Φ dans une base de E.
- b) Quelle relation existe-t-il entre les polynômes caractéristiques χ_{Φ} et χ_A ?
- c) Si Φ est diagonalisable, la matrice A l'est-elle?
- d) Si A est diagonalisable, l'endomorphisme Φ l'est-il?

Applications de la diagonalisabilité d'un endomorphisme

Exercice 154 [00809] [Correction]

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension n admettant exactement n valeurs propres distinctes.

- a) Montrer qu'il existe un vecteur $a \in E$ tel que la famille $(a, f(a), \dots, f^{n-1}(a))$ soit une base de E.
- b) Quelle est la forme de la matrice de f dans cette base?

Exercice 155 [00808] [Correction]

Soit f un endomorphisme diagonalisable d'un $\mathbb{K}\text{-espace}$ vectoriel E de dimension n.

On note C_f l'ensemble des endomorphismes qui commutent avec f.

a) Montrer que C_f est un sous-espace vectoriel de $\mathcal{L}(E)$.

- b) Montrer qu'un endomorphisme g appartient à C_f si, et seulement si, chaque sous-espace propre de f est stable par g.
- c) En déduire que

$$\dim \mathcal{C}_f = \sum_{\lambda \in Sp(f)} \alpha_\lambda^2$$

où α_{λ} est l'ordre de multiplicité de la valeur propre λ .

d) On suppose que les valeurs propres de f sont simples. Montrer que $(\mathrm{Id}, f, \ldots, f^{n-1})$ est une base de \mathcal{C}_f .

Exercice 156 [02539] [Correction]

Soit E un espace vectoriel de dimension finie $n \ge 2$.

- a) Donner un exemple d'endomorphisme f de E dont l'image et le noyau ne sont pas supplémentaires.
- b) On suppose, dans cette question seulement, que f est une endomorphisme de E diagonalisable.

Justifier que l'image et le noyau de f sont supplémentaires.

c) Soit f un endomorphisme de E. Montrer qu'il existe un entier nature non nul k tel que

$$\operatorname{Im}(f^k) \oplus \ker(f^k) = E$$

L'endomorphisme f^k est-il nécessairement diagonalisable?

d) Le résultat démontré en c) reste-t-il valable si l'espace est de dimension infinie?

Exercice 157 [00806] [Correction]

Soit v un endomorphisme d'un $\mathbb{C}\text{-espace}$ vectoriel E de dimension finie diagonalisable.

- a) Montrer qu'il existe un endomorphisme u de E vérifiant $u^2 = v$.
- b) Montrer qu'on peut choisir u solution qui soit un polynôme en v (indice : on pourra introduire un polynôme interpolateur).

Exercice 158 [03252] [Correction]

Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension n possédant exactement n valeurs propres.

- a) Déterminer la dimension des sous-espaces propres de f.
- b) Soit g un endomorphisme de E vérifiant $g^2 = f$. Montrer que g et f commutent. En déduire que les vecteurs propres de f sont aussi vecteurs propres de g.
- c) Combien y a-t-il d'endomorphismes g de E solutions de l'équation

$$g^2 = f$$

Exercice 159 [03454] [Correction]

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension $n \in \mathbb{N}^*$. On suppose que f possède exactement n valeurs propres distinctes. Montrer que seuls les polynômes en f commutent avec f (indice : on pourra introduire un polynôme interpolateur convenable).

Exercice 160 [02502] [Correction]

Soient E un \mathbb{R} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$, $v \in \mathcal{L}(E)$ diagonalisables vérifiant

$$u^{3} = v^{3}$$

Montrer que u = v.

Trigonalisabilité d'une matrice

Exercice 161 [00816] [Correction]

Montrer qu'une matrice triangulaire inférieure est trigonalisable.

Exercice 162 [03284] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant $AB = O_n$.

- a) Montrer que les matrices A et B ont un vecteur propre en commun.
- b) Etablir que A et B sont simultanément trigonalisables.

Trigonalisation d'une matrice

Exercice 163 [00820] [Correction]

Soit

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{array}\right)$$

- a) Calculer le polynôme caractéristique de A.
- b) Trigonaliser la matrice A.

Exercice 164 [00821] [Correction]

Soit

$$A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{array}\right)$$

- a) Calculer le polynôme caractéristique de A.
- b) Trigonaliser la matrice A.

Exercice 165 [03583] [Correction]

Trigonaliser la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{array}\right)$$

Exercice 166 [02526] [Correction]

Montrer que la matrice

$$\left(\begin{array}{ccc}
13 & -5 & -2 \\
-2 & 7 & -8 \\
-5 & 4 & 7
\end{array}\right)$$

est trigonalisable et préciser une matrice de passage.

Exercice 167 [03809] [Correction]

a) Déterminer l'ensemble Ω des réels a tels que

$$A = \left(\begin{array}{ccc} 2 & 1 & -2 \\ 1 & a & -1 \\ 1 & 1 & -1 \end{array}\right)$$

n'est pas diagonalisable.

b) Pour $a \in \Omega$, trouver P inversible telle que $P^{-1}AP$ soit triangulaire supérieure.

Réduction et sous-espaces stables

Exercice 168 [00805] [Correction]

Soient f,g endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie. On suppose que f est diagonalisable. Montrer :

 $f\circ g=g\circ f\Leftrightarrow \text{ chaque sous-espace propre de }f\text{ est stable par }g$

Exercice 169 [00807] [Correction]

Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie vérifiant :

« Tout sous-espace vectoriel stable par f admet un supplémentaire stable » Montrer que l'endomorphisme f est diagonalisable.

Exercice 170 [02675] [Correction]

Soit E un \mathbb{C} -espace vectoriel de dimension finie.

Déterminer les $f \in \mathcal{L}(E)$ tels que tout sous-espace vectoriel de E stable par f possède un supplémentaire stable.

Exercice 171 [00761] [Correction]

Soient E un \mathbb{K} -espace vectoriel muni d'une base $\mathcal{B}, f \in \mathcal{L}(E)$ et H un hyperplan.

- a) Déterminer la dimension du sous-espace vectoriel $\{u \in E^*/u(H) = \{0\}\}.$
- b) Montrer que si H a pour équation u(x) = 0 alors H est stable par f si, et seulement si, $u \circ f$ est colinéaire à u.
- c) Soient A et L les matrices dans \mathcal{B} de f et u.

Montrer que H est stable par f si, et seulement si, tL est vecteur propre de tA

d) Déterminer les plans stables par

$$A = \left(\begin{array}{rrr} 3 & -2 & -4 \\ -1 & 1 & 1 \\ 1 & -2 & -2 \end{array}\right)$$

Exercice 172 [03464] [Correction]

Soit u un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie non nulle Montrer qu'il existe une droite vectorielle ou un plan vectoriel stable par u.

Exercice 173 [03745] [Correction]

Soient f une endomorphisme de \mathbb{R}^n et A sa matrice dans la base canonique de \mathbb{R}^n . On suppose que λ est une valeur propre non réelle de A et que $Z \in \mathbb{C}^n$ est un vecteur propre associé.

On note X et Y les vecteurs de \mathbb{R}^n dont les composantes sont respectivement les parties réelles et imaginaires des composantes de Z.

- a) Montrer que X et Y sont non colinéaires.
- b) Montrer que Vect(X,Y) est stable par f.
- c) On suppose que la matrice de f est donnée par

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right)$$

Déterminer tous les plans stables par f.

Enoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA

Exercice 174 [02726] [Correction]

Soit E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ tel que

$$u^3 = \mathrm{Id}$$

Décrire les sous-espaces stables de u.

Même question avec E un \mathbb{R} -espace vectoriel.

Exercice 175 [00855] [Correction]

Soit u un endomorphisme diagonalisable d'un \mathbb{K} -espace vectoriel E de dimension finie.

Montrer qu'un sous-espace vectoriel F non nul est stable par u si, et seulement si, il possède une base de vecteurs propres de u.

Exercice 176 [00856] [Correction]

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice est

$$\left(\begin{array}{ccc}
5 & 1 & -1 \\
2 & 4 & -2 \\
1 & -1 & 3
\end{array}\right)$$

dans la base canonique.

Déterminer les sous-espaces vectoriels stables par f.

Application de la trigonalisabilité

Exercice 177 [03551] [Correction]

Expliquer pourquoi le déterminant de $A \in \mathcal{M}_n(\mathbb{R})$ est le produit des valeurs propres complexes de A, valeurs propres comptées avec multiplicité.

Exercice 178 [00817] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose χ_A scindé.

- a) Justifier que A est trigonalisable.
- b) Etablir que pour tout $k \in \mathbb{N}$,

$$\operatorname{Sp}(A^k) = \{\lambda^k / \lambda \in \operatorname{Sp}(A)\}$$

Exercice 179 [00818] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{Z})$ de polynôme caractéristique

$$\prod_{i=1}^{n} (X - \lambda_i) \text{ avec } \lambda_i \in \mathbb{C}$$

Déterminer une matrice à coefficients entiers de polynôme caractéristique

$$\prod_{i=1}^{n} \left(X - \lambda_i^p \right)$$

Exercice 180 [00819] [Correction]

Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{C})$,

$$\det(\exp(A)) = \exp(\operatorname{tr} A)$$

Exercice 181 [03120] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$.

On suppose le polynôme caractéristique de A de la forme

$$\chi_A(X) = \prod_{k=1}^n (X - \lambda_k)$$

Exprimer le polynôme caractéristique de P(A).

Exercice 182 [02389] [Correction]

- a) Soient A et B dans $\mathcal{M}_2(\mathbb{K})$ telles que AB = BA. Montrer que $B \in \mathbb{K}[A]$ ou $A \in \mathbb{K}[B]$.
- b) Le résultat subsiste-t-il dans $\mathcal{M}_3(\mathbb{K})$?

Exercice 183 [02954] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\operatorname{tr}(A^m) \to 0$ quand $m \to +\infty$. Montrer que les valeurs propres de A sont de module < 1

Exercice 184 [03479] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant

$$\forall m \in \mathbb{N}, \operatorname{tr}(A^m) = \operatorname{tr}(B^m)$$

Montrer que les matrices A et B ont les mêmes valeurs propres.

Exercice 185 [02521] [Correction]

Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$ et $B = (b_{i,j}) \in \mathcal{M}_n(\mathbb{C})$, on définit $A \star B \in \mathcal{M}_{n^2}(\mathbb{C})$ par

$$A \star B = \begin{pmatrix} a_{1,1}B & \cdots & a_{1,n}B \\ \vdots & & \vdots \\ a_{n,1}B & \cdots & a_{n,n}B \end{pmatrix}$$

- a) Montrer que si $A, A', B, B' \in \mathcal{M}_n(\mathbb{C})$ alors $(A \star B)(A' \star B') = (AA') \star (BB')$.
- b) En déduire que $A \star B$ est inversible si, et seulement si, A et B sont inversibles.
- c) Déterminer le spectre de $A \star B$.

En déduire le polynôme caractéristique, la trace et le déterminant de $A \star B$.

Exercice 186 [04072] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Déterminer les valeurs propres de A^k pour $k \in \mathbb{N}$.

Polynômes en un endomorphisme ou une matrice

Exercice 187 [00753] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$.

On suppose qu'il existe un vecteur $x_0 \in E$ telle que la famille $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ soit libre.

Montrer que seuls les polynômes en u commutent avec u.

Exercice 188 [02598] [Correction]

Soient A et B deux matrices réelles carrées d'ordre n telles qu'il existe un polynôme $P\in\mathbb{R}\left[X\right]$ de degré au moins égal à 1 et vérifiant

$$P(0) = 1 \text{ et } AB = P(A)$$

Montrer que A est inversible et que A et B commutent.

Exercice 189 [03423] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. On suppose qu'il existe un polynôme non constant $P \in \mathbb{K}[X]$ vérifiant

$$AB = P(A)$$
 et $P(0) \neq 0$

Montrer que A est inversible et que A et B commutent.

Exercice 190 [03033] [Correction]

Soient A et B dans $\mathcal{M}_n(\mathbb{R})$. On suppose que A est nilpotente et qu'il existe $P \in \mathbb{R}[X]$ tel que P(0) = 1 et B = AP(A). Montrer qu'il existe $Q \in \mathbb{R}[X]$ tel que Q(0) = 1 et A = BQ(B).

Exercice 191 [03210] [Correction]

Soient $A \in GL_n(\mathbb{C})$ et $B \in \mathcal{M}_n(\mathbb{C})$ telle que $B^p = O_n$.

- a) Montrer que $I_n + A^{-1}BA$ est inversible et exprimer son inverse.
- b) On pose

$$H = \{I_n + P(B)/P \in \mathbb{C}[X], P(0) = 0\}$$

Montrer que H est un sous-groupe commutatif de $(GL_n(\mathbb{C}), \times)$.

Exercice 192 [02574] [Correction]

Dans $\mathcal{M}_n(\mathbb{R})$, on considère la matrice

$$J = \left(\begin{array}{cccc} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ (0) & & & 0 \end{array}\right)$$

Exprimer simplement $P(aI_n + J)$ pour $P \in \mathbb{R}[X]$.

Lemme de décomposition des noyaux

Exercice 193 [00754] [Correction]

Soit $u \in \mathcal{L}(E)$ vérifiant $u^3 = \text{Id. Justifier}$

$$\ker(u - \operatorname{Id}) \oplus \ker(u^2 + u + \operatorname{Id}) = E$$

Exercice 194 [02681] [Correction]

Soit E un espace vectoriel sur \mathbb{K} et a un élément non nul de \mathbb{K} . Soit $f \in \mathcal{L}(E)$ tel que $f^3 - 3af^2 + a^2f = 0$. Est-il vrai que ker f et $\mathrm{Im} f$ sont supplémentaires?

Exercice 195 [03465] [Correction]

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E et $P \in \mathbb{K}[X]$ annulateur de u. On suppose qu'on peut écrire P = QR avec Q et R premiers entre eux. Etablir

$$\operatorname{Im}Q(u) = \ker R(u)$$

Polynômes annulateurs

Exercice 196 [00822] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

Justifier l'existence d'un entier $p\geqslant 0$ tel que la famille $(\mathrm{Id},u,\ldots,u^p)$ soit liée.

En déduire que u possède un polynôme annulateur non nul.

Exercice 197 [02916] [Correction]

Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire par blocs de la forme

$$M = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$$
 avec $A \in \mathcal{M}_p(\mathbb{K})$ et $B \in \mathcal{M}_q(\mathbb{K})$

On suppose connus deux polynômes P et $Q\in\mathbb{K}\left[X\right]$ annulateurs de A et B respectivement.

Exprimer en fonction de P et Q un polynôme annulateur de M.

Exercice 198 [00823] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ tel que les espaces $\ker(u \circ (u - \operatorname{Id}))$ et $\ker(u \circ (u + \operatorname{Id}))$ soient supplémentaires.

Montrer que u est une symétrie vectorielle.

Exercice 199 [02442] [Correction]

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension quelconque. On suppose qu'il existe un polynôme annulateur P de f vérifiant

$$P(0) = 0 \text{ et } P'(0) \neq 0$$

Montrer que l'image et le noyau de f sont supplémentaires dans E.

Exercice 200 [03277] [Correction]

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel.

On suppose qu'il existe un polynôme annulateur de u dont 0 est racine simple. Montrer

$$\ker u = \ker u^2$$

Exercice 201 [02501] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension quelconque, $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ ayant 0 comme racine simple et tel que P(u) = 0.

a) Montrer

$$\ker u^2 = \ker u \text{ et } \operatorname{Im} u^2 = \operatorname{Im} u$$

b) En déduire

$$E = \ker u \oplus \operatorname{Im} u$$

Exercice 202 [01353] [Correction]

Soient E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ nilpotent. On suppose qu'il existe $P \in \mathbb{K}[X]$ tel que P(u) = 0. Si $Q \in \mathbb{K}[X]$, existe-t-il $R \in \mathbb{K}[X]$ tel que R(Q(u)) = 0?

Polynôme minimal

Exercice 203 [00824] [Correction]

Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel admettant un polynôme minimal Π_u et $P \in \mathbb{K}[X]$.

Montrer que P(u) est inversible si, et seulement si, P et Π_u sont premiers entre eux.

Observer qu'alors $P(u)^{-1} \in \mathbb{K}[u]$.

Exercice 204 [00825] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

On suppose qu'il existe deux sous-espaces vectoriels supplémentaires F et G stables par u.

Etablir que $\Pi_u = \operatorname{ppcm}(\Pi_{u_F}, \Pi_{u_G})$ (en notant Π_v le polynôme minimal d'un endomorphisme v).

Exercice 205 [00826] [Correction]

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E.

Si u admet un polynôme minimal Π_u et si F est un sous-espace vectoriel stable par u alors montrer que u_F admet un polynôme minimal et que celui-ci divise Π_u .

Exercice 206 [00827] [Correction]

Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ de polynôme minimal $(X-1)^2$ est semblable à une matrice diagonale par blocs avec des blocs diagonaux de la forme

$$(1)$$
 ou $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

Exercice 207 [02393] [Correction]

Existe-t-il dans $\mathcal{M}_n(\mathbb{R})$ une matrice de polynôme minimal $X^2 + 1$?

Exercice 208 [02708] [Correction]

Soit

$$A = \begin{pmatrix} a & 0 & \cdots & \cdots & \cdots & 0 & b \\ 0 & \ddots & \ddots & & \ddots & \ddots & 0 \\ \vdots & \ddots & a & 0 & b & \ddots & \vdots \\ \vdots & & 0 & a+b & 0 & & \vdots \\ \vdots & \ddots & b & 0 & a & \ddots & \vdots \\ 0 & \ddots & \ddots & & \ddots & \ddots & 0 \\ b & 0 & \cdots & \cdots & \cdots & 0 & a \end{pmatrix} \in \mathcal{M}_{2n+1}(\mathbb{C})$$

Quels sont les $P \in \mathbb{C}[X]$ tels que P(A) = 0?

Exercice 209 [02727] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie et $f\in\mathcal{L}(E)$ de polynôme minimal Π_f .

Montrer l'existence de $x \in E$ tel que

$$\{P \in \mathbb{C}[X]/P(f)(x) = 0\}$$

soit l'ensemble des multiples de Π_f .

Exercice 210 [03073] [Correction]

Etant donné E un espace vectoriel de dimension finie, u un endomorphisme de E et λ un scalaire, on dit que λ est séparable si le noyau et l'image de $u-\lambda \mathrm{Id}$ sont supplémentaires.

a) Montrer que tout scalaire non séparable de u en est une valeur propre.

- b) Montrer qu'un endomorphisme scindé est diagonalisable si, et seulement si, toutes ses valeurs propres sont séparables.
- c) Caractériser la séparabilité d'une valeur propre à l'aide du polynôme minimal de u.
- d) Soit, avec ces notations, l'endomorphisme m de $\mathcal{L}(E)$ qui à v associe $u \circ v$. Comparer l'ensembles ses scalaires séparables relativement à m avec celui des scalaires séparables relativement à u.

Polynômes annulateurs et valeurs propres

Exercice 211 [00830] [Correction]

Soit P un polynôme annulateur d'un endomorphisme f. Montrer que si λ est valeur propre de f alors $P(\lambda) = 0$.

Exercice 212 [03191] [Correction]

- a) Montrer que si P est un polynôme annulateur d'un endomorphisme f alors $P(\lambda) = 0$ pour toute valeur propre λ de f.
- b) Montrer que si f vérifie

$$f^3 + 2f^2 - f - 2Id = 0$$

alors f est bijectif.

Exercice 213 [00831] [Correction]

Pour $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, on note $\tilde{f}: x \mapsto f(-x)$. L'application $\varphi: f \mapsto \tilde{f}$ est clairement un endomorphisme involutif de $\mathcal{F}(\mathbb{R}, \mathbb{R})$. Quelles en sont les valeurs propres?

Exercice 214 [00832] [Correction]

Soit $T: \mathbb{R}[X] \to \mathbb{R}[X]$ l'endomorphisme défini par T(P) = P(1-X).

- a) Montrer que T est un automorphisme.
- b) Déterminer valeurs propres de T.

Exercice 215 [00833] [Correction]

Montrer que si un endomorphisme u d'un \mathbb{K} -espace vectoriel E de dimension quelconque admet un polynôme minimal Π_u alors les valeurs propres de u sont exactement les racines de son polynôme minimal.

Théorème de Cayley Hamilton

Exercice 216 [00834] [Correction]

Déterminer un polynôme annulateur de

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \mathcal{M}_2(\mathbb{K})$$

Exprimer A^{-1} lorsque celle-ci existe.

Exercice 217 [00835] [Correction]

Soit

$$A \in \begin{pmatrix} \lambda_1 & & \star \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

Montrer que $(X - \lambda_1) \dots (X - \lambda_n)$ est annulateur de A.

Exercice 218 [03693] [Correction]

Soit la matrice

$$A = \begin{pmatrix} 0 & -b & a \\ b & 0 & -c \\ -a & c & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

- a) A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?
- b) A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$?
- c) Soit λ un réel non nul; la matrice $B = A + \lambda I_3$ est-elle inversible?
- d) Montrer qu'il existe trois réels α, β, γ tels que

$$B^{-1} = \alpha A^2 + \beta A + \gamma I_3$$

Exercice 219 [03019] [Correction]

Soit u un automorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$. Montrer que u^{-1} est un polynôme en u.

Exercice 220 [00836] [Correction]

Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension n. On suppose que f possède une unique valeur propre λ .

- a) A quelle condition l'endomorphisme est-il diagonalisable?
- b) Calculer le polynôme caractéristique de f.
- c) Justifier que l'endomorphisme $f \lambda Id$ est nilpotent.

Exercice 221 [00839] [Correction]

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension n.

On suppose qu'il existe $x \in E$ et $N \in \mathbb{N}$ tels que $(x, f(x), \dots, f^{N-1}(x))$ soit une famille génératrice de E.

- a) Montrer que la famille $(x, f(x), \dots, f^{n-1}(x))$ est une base de E.
- b) Démontrer que les endomorphismes commutant avec f sont les polynômes en f.

Exercice 222 [00840] [Correction]

Soient $A, B, M \in \mathcal{M}_n(\mathbb{C})$ telles que AM = MB avec $M \neq O_n$.

- a) Montrer que pour tout $P \in \mathbb{C}[X]$, on a P(A)M = MP(B).
- b) Montrer que A et B ont une valeur propre en commun.

Exercice 223 [02667] [Correction]

Montrer qu'il existe $(a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$ tel que :

$$\forall P \in \mathbb{R}_{n-1}[X], P(X+n) + \sum_{k=0}^{n-1} a_k P(X+k) = 0$$

Exercice 224 [03185] [Correction]

a) Soit u un endomorphisme inversible d'un $\mathbb{K}\text{-espace}$ vectoriel E de dimension finie.

Montrer qu'il existe un polynôme $Q \in \mathbb{K}[X]$ vérifiant

$$u^{-1} = Q(u)$$

b) Soit u l'endomorphisme de $\mathbb{K}[X]$ qui envoie le polynôme P(X) sur P(2X). Montrer que u est un automorphisme et déterminer ses éléments propres. Existe-t-il $Q \in \mathbb{K}[X]$ tel que

$$u^{-1} = Q(u)?$$

Exercice 225 [03755] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible.

Montrer que A est triangulaire supérieure si, et seulement si, A^k l'est pour tout $k \ge 2$.

Donner un contre-exemple dans le cas où l'on ne suppose plus la matrice ${\cal A}$ inversible.

Exercice 226 [03918] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie et u un endomorphisme de E. On note $\lambda_1, \ldots, \lambda_q$ les valeurs propres de u, n_1, \ldots, n_q leurs multiplicités respectives. On suppose que tout i de $\{1, \ldots, q\}$, l'espace propre de u associé à λ_i est de dimension 1.

- a) Si $1 \le i \le q$ et $0 \le m \le n_i$, montrer que le noyau de $(u \lambda_i \mathrm{Id}_E)^m$ est de dimension m.
- b) Soit F un sous-espace vectoriel de E stable par u. Montrer qu'il existe un polynôme unitaire Q de $\mathbb{C}\left[X\right]$ tel que

$$F = \ker\left(Q(u)\right)$$

c) Montrer que le nombre de sous-espaces de E stables par u est le nombre de diviseurs unitaires de χ_u dans $\mathbb{C}[X]$.

Exercice 227 [03299] [Correction]

Soient $n \ge 2$, A et B des matrices de $\mathcal{M}_n(\mathbb{Z})$ de déterminants non nuls et premiers entre eux.

Montrer qu'il existe U et V dans $\mathcal{M}_n(\mathbb{Z})$ telles que

$$UA + VB = I_n$$

(on pourra écrire $\chi_A(X) = XQ_A(X) \pm \det A$) On donnera un exemple pour n = 2.

Calcul de polynôme minimal

Exercice 228 [00841] [Correction] Soit

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Déterminer μ_A .

Exercice 229 [00845] [Correction]

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension n.

- a) On suppose que f est diagonalisable. A quelle condition existe-t-il un vecteur $x \in E$ tel que la famille formée des vecteurs $x_1 = x$, $x_2 = f(x_1), \ldots, x_n = f(x_{n-1})$ forme une base de E?
- b) On ne suppose plus f diagonalisable mais on suppose l'existence d'une base (x_1, x_2, \ldots, x_n) de E du type précédent. Déterminer le commutant de f. Quel est le polynôme minimal de f?

Exercice 230 [02707] [Correction]

Soient $a, b \in \mathbb{R}$, $b \neq 0$ et $A \in \mathcal{M}_n(\mathbb{R})$ la matrice dont les éléments diagonaux valent a et les autres valent b. A est-elle diagonalisable? Quelles sont les valeurs propres de A? Quel est le polynôme minimal de A? Sous quelles conditions sur a et b, A est-elle inversible? Lorsque c'est le cas trouver l'inverse de A.

Exercice 231 [00843] [Correction]

Soit a un réel. Pour $M \in \mathcal{M}_n(\mathbb{R})$, on pose

$$L(M) = aM + \operatorname{tr}(M)I_n$$

- a) Montrer que L est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$, trouver ses éléments propres et son polynôme minimal.
- b) Pour quels a, L est-il un automorphisme? Trouver son inverse dans ces cas.

Exercice 232 [02497] [Correction]

Soit a un réel. Pour $M \in \mathcal{M}_n(\mathbb{R})$ (avec $n \geq 2$), on pose

$$L(M) = aM + \operatorname{tr}(M)I_n$$

- a) Montrer que L est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ et trouver ses éléments propres et son polynôme minimal.
- b) Pour quels a, l'endomorphisme L est-il un automorphisme? Trouver son inverse dans ces cas.

Diagonalisabilité des matrices scindées simples

Exercice 233 [00847] [Correction]

Soit

$$A = \begin{pmatrix} O_n & I_n \\ -I_n & O_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$$

Calculer A^2 .

Selon que $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} dire si la matrice A est, ou non, diagonalisable.

Exercice 234 [00848] [Correction]

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_{2n}(\mathbb{C})$ définie par blocs

$$A = \left(\begin{array}{cc} O & -I_n \\ I_n & O \end{array}\right)$$

- a) Calculer A^2 .
- b) La matrice A est-elle diagonalisable? Déterminer les valeurs propres de A et les dimensions de ses espaces propres?

Exercice 235 [00846] [Correction]

Montrer qu'une matrice de permutation est diagonalisable.

Exercice 236 [03645] [Correction]

Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que

$$M^2 + {}^tM = I_n$$

a) Montrer

M inversible si, et seulement si, $1 \notin \operatorname{Sp} M$

b) Montrer que la matrice M est diagonalisable.

Exercice 237 [03469] [Correction]

Soit $M \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$M^2 + {}^tM = 2I_n$$

Montrer que cette matrice M est diagonalisable.

Exercice 238 [03792] [Correction]

Soient n un entier supérieur ou égal à 2 et M une matrice carrée de taille n telle que $M^2+{}^tM=I_n$

Quelles sont les valeurs propres de M ? Est-elle symétrique ? Est-elle diagonalisable ?

Exercice 239 [03192] [Correction]

Soit $A \in \mathcal{M}_2(\mathbb{Z})$ telle que det A = 1 et qu'il existe $p \in \mathbb{N}^*$ pour lequel

$$A^p = I_n$$

a) Montrer que A est diagonalisable dans \mathbb{C} .

On note α et β les deux valeurs propres de A.

b) Montrer que $|\alpha| = |\beta| = 1$, que $\alpha = \bar{\beta}$ et

$$|\text{Re}(\alpha)| \in \{0, 1/2, 1\}$$

- c) Montrer que $A^{12} = I_2$
- d) Montrer que l'ensemble $G=\{A^n/n\in\mathbb{N}\}$ est un groupe monogène fini pour le produit matriciel.

Exercice 240 [03138] [Correction]

Soit

Soit

$$M = \left(\begin{array}{cc} A & A \\ 0 & A \end{array}\right)$$

avec $A \in \mathcal{M}_n(\mathbb{R})$.

a) Montrer que

$$\forall P \in \mathbb{R}[X], P(M) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix}$$

b) Enoncer une condition nécessaire et suffisante pour que M soit diagonalisable.

Exercice 241 [03281] [Correction]

$$M = \left(\begin{array}{cc} A & B \\ 0 & A \end{array}\right)$$

avec $A, B \in \mathcal{M}_n(\mathbb{R})$ vérifiant AB = BA

a) Montrer que

$$\forall P \in \mathbb{R}[X], P(M) = \begin{pmatrix} P(A) & P'(A)B \\ 0 & P(A) \end{pmatrix}$$

b) Enoncer une condition nécessaire et suffisante sur A et B pour que M soit diagonalisable.

Exercice 242 [02953] [Correction]

Déterminer les couples $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ tels que

$$\begin{pmatrix} A & B \\ O & A \end{pmatrix}$$

est diagonalisable.

Exercice 243 [03027] [Correction]

Trouver les matrices $M \in \mathcal{M}_n(\mathbb{C})$ vérifiant $M^5 = M^2$ et $\operatorname{tr}(M) = n$.

Exercice 244 [03056] [Correction]

Soient $\lambda, \mu \in \mathbb{C}^*$, $\lambda \neq \mu$ et $A, B, M \in \mathcal{M}_p(\mathbb{C})$ telles que

$$I_p = A + B$$

$$M = \lambda A + \mu B$$

$$M^2 = \lambda^2 A + \mu^2 B$$

a) Montrer que M est inversible et exprimer M^{-1} .

On pourra calculer $M^2 - (\lambda + \mu)M + \lambda \mu I_p$

- b) Montrer que A et B sont des projecteurs.
- c) La matrice M est-elle diagonalisable? Déterminer son spectre.

Exercice 245 [00708] [Correction]

Soit $(A, B, C) \in \mathcal{M}_n(\mathbb{R})^3$ tel que

$$C = A + B$$
, $C^2 = 2A + 3B$ et $C^3 = 5A + 6B$

Les matrices A et B sont-elles diagonalisables?

Exercice 246 [03291] [Correction]

a) Montrer que, pour $z_1, \ldots, z_n \in \mathbb{C}$ avec $z_1 \neq 0$, on a l'égalité

$$\left| \sum_{k=1}^{n} z_k \right| = \sum_{k=1}^{n} |z_k|$$

si, et seulement si, il existe n-1 réels positifs $\alpha_2, \ldots, \alpha_n$ tels que

$$\forall k \geqslant 2, z_k = \alpha_k z_1$$

b) Déterminer toutes les matrices de $\mathcal{M}_n(\mathbb{C})$ telles que $M^n=I_n$ et $\mathrm{tr} M=n$

Exercice 247 [03425] [Correction] Soient

$$M = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_5(\mathbb{R})$$

et $m \in \mathcal{L}(\mathbb{R}^5)$ canoniquement associé à M.

- a) En procédant à un calcul par bloc, déterminer $p \in \mathbb{N}^*$ tel que $M^p = I_5$. En déduire que M est diagonalisable dans $\mathcal{M}_5(\mathbb{C})$.
- b) Déterminer un vecteur $x \in \mathbb{R}^5$ tel que $x, m(x), m^2(x), m^3(x)$ et $m^4(x)$ forme une base de \mathbb{R}^5 .

Quelle est la matrice de m dans cette base?

Exercice 248 [00479] [Correction]

Soit A la matrice donnée par

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$$

- a) Déterminer un polynôme annulateur non trivial de la matrice A.
- b) Soit $M \in \mathcal{M}_2(\mathbb{R})$ vérifiant

$$M^2 + M = A$$

Justifier que la matrice M est diagonalisable et déterminer les valeurs propres possibles pour M.

c) Déterminer alors les matrices M possibles à l'aide de polynômes annulateurs appropriés.

Exercice 249 [03810] [Correction]

a) Trouver les valeurs propres des matrices $M \in \mathcal{M}_2(\mathbb{R})$ vérifiant

$$M^2 + M = \left(\begin{array}{cc} 1 & 1\\ 1 & 1 \end{array}\right)$$

b) Déterminer alors les matrices M solutions à l'aide de polynômes annulateurs appropriés.

Diagonalisabilité des endomorphismes scindés simples

Exercice 250 [00851] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$ et $p \in \mathcal{L}(E)$ tel que p^2 soit un projecteur.

- a) Quelles sont les valeurs propres possibles pour p?
- b) Montrer que p est diagonalisable si, et seulement si, $p^3 = p$.

Exercice 251 [00852] [Correction]

Soient E un espace vectoriel de dimension 3 et f un endomorphisme de E vérifiant

$$f^4 = f^2$$

On suppose que 1 et -1 sont valeurs propres de f. Montrer que f est diagonalisable.

Exercice 252 [03030] [Correction]

Soient $P \in \mathcal{M}_n(\mathbb{R})$ une matrice de projection et φ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par

$$\varphi(M) = PM + MP$$

Montrer que l'endomorphisme φ est diagonalisable

Exercice 253 [02720] [Correction]

Soit $n \in \mathbb{N}^*$, $u \in \mathcal{L}(\mathbb{R}^{2n+1})$. On suppose $u^3 = u$, $\operatorname{tr} u = 0$ et $\operatorname{tr} u^2 = 2n$. On note

$$C(u) = \left\{ v \in \mathcal{L}(\mathbb{R}^{2n+1}) / uv = vu \right\}$$

- a) Calculer la dimension C(u).
- b) Quels sont les n tels que $C(u) = \mathbb{R}[u]$?

Exercice 254 [02721] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On pose $f_A(M) = AM$, pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$.

- a) Montrer que si $A^2 = A$ alors f_A est diagonalisable.
- b) Montrer que f_A est diagonalisable si, et seulement si, A est diagonalisable.

Exercice 255 [00853] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On pose f(M) = AM pour toute $M \in \mathcal{M}_n(\mathbb{C})$.

- a) L'application f est-elle un endomorphisme de $\mathcal{M}_n(\mathbb{C})$?
- b) Etudier l'équivalence entre les inversibilités de A et de f.
- c) Etudier l'équivalence entre les diagonalisabilités de A et de f.

Exercice 256 [03646] [Correction]

Soient f, u, v trois endomorphismes d'un \mathbb{R} -espace vectoriel E de dimension finie . On suppose qu'il existe $\alpha, \beta \in \mathbb{R}$ distincts tels que

$$\begin{cases} Id = u + v \\ f = \alpha u + \beta v \\ f^2 = \alpha^2 u + \beta^2 v \end{cases}$$

- a) Montrer que f est diagonalisable.
- b) Justifier que u et v sont des projections vectorielles dont on précisera noyau et image en fonction des espace $\ker(f \alpha \operatorname{Id})$ et $\ker(f \beta \operatorname{Id})$.
- c) Exprimer f^n pour tout $n \in \mathbb{N}$ en fonction de α, β et u, v.

Exercice 257 [03028] [Correction]

Soient $\alpha, \beta \in \mathbb{K}$ et u, v, f trois endomorphismes d'un \mathbb{K} -espace vectoriel E de dimension finie vérifiant

$$\begin{cases} f = \alpha u + \beta v \\ f^2 = \alpha^2 u + \beta^2 v \\ f^3 = \alpha^3 u + \beta^3 v \end{cases}$$

Montrer que f est diagonalisable.

Exercice 258 [03798] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et F,G deux sous-espaces vectoriels supplémentaires non triviaux. On note p la projection sur F parallèlement à G et s la symétrie par rapport à F et parallèlement à G. Enfin on pose pour f endomorphisme de F

$$\phi(f) = p \circ f \circ s$$

ce qui définit un endomorphisme ϕ sur $\mathcal{L}(E)$.

- a) Montrer que ϕ annule un polynôme « simple ». L'endomorphisme ϕ est-il diagonalisable ?
- b) Déterminer les éléments propres de ϕ .

(indice : on pourra considérer les matrices de p et s dans une base adaptée à la décomposition $E=F\oplus G)$

Exercice 259 [03744] [Correction]

Soient $n \in \mathbb{N}^*$ et $E = \mathcal{M}_n(\mathbb{R})$. Pour $A, B \in E$ fixées non nulles, on définit $f \in \mathcal{L}(E)$ par

$$\forall M \in E, f(M) = M + \operatorname{tr}(AM)B$$

- a) Déterminer un polynôme annulateur de degré 2 de f et en déduire une condition nécessaire et suffisante sur (A,B) pour que f soit diagonalisable. Quels sont alors les éléments propres de f?
- b) Déterminer $\dim C$ où

$$C = \{g \in \mathcal{L}(E)/f \circ g = g \circ f\}$$

Enoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA

Exercice 260 [02410] [Correction]

Soient $n \geq 2$, $A \in \mathcal{M}_n(\mathbb{R})$ et f l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par

$$f(M) = \operatorname{tr}(A)M - \operatorname{tr}(M)A$$

où tr désigne la forme linéaire trace.

Étudier la réduction de l'endomorphisme f et préciser la dimension de ses sous-espaces propres.

Exercice 261 [02513] [Correction]

Soit u un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie tel qu'il existe deux réels non nuls distincts a et b vérifiant

$$(u - a\mathrm{Id})(u - b\mathrm{Id}) = 0$$

Soient

$$p = \frac{1}{b-a}(u - a \text{Id}) \text{ et } q = \frac{1}{a-b}(u - b \text{Id})$$

- a) Calculer p + q, $p \circ p$, $q \circ q$ et $q \circ p$.
- b) Montrer que $E = \ker p \oplus \ker q$.
- c) Trouver les éléments propres de u. L'endomorphisme u est-il diagonalisable?

Etude de matrice ou d'endomorphisme vérifiant une identité polynomiale

Exercice 262 [00849] [Correction]

Soient E un \mathbb{R} -espace vectoriel de dimension finie et f un endomorphisme de E vérifiant

$$f^3 = 4f$$

Montrer que la trace de f est un entier pair.

Exercice 263 [00850] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que

$$A^3 - A^2 + A - I = O$$

Montrer que det(A) = 1.

Exercice 264 [02608] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$A^3 + I_n = O_n$$

Montrer que la trace de A est un entier.

Exercice 265 [02714] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$A^3 + A^2 + A = 0$$

Montrer que la matrice A est de rang pair.

Exercice 266 [00838] [Correction]

Soit $A \in \mathcal{M}_2(\mathbb{Z})$ vérifiant :

$$\exists n \in \mathbb{N}^{\star}, A^n = I_2$$

Montrer que $A^{12} = I_2$.

Exercice 267 [02652] [Correction]

On fixe $n \in \mathbb{N}^*$ et on note

$$E_n = \{ A \in \mathcal{M}_n(\mathbb{Z}) / \exists m \in \mathbb{N}^*, A^m = I_n \}$$

Pour $A \in E_n$, on pose

$$\omega(A) = \min \left\{ m \in \mathbb{N}^* / A^m = I_n \right\}$$

Montrer que $\omega(E_n)$ est fini.

Diagonalisabilité et endomorphismes induits

Exercice 268 [00854] [Correction]

Soit f un endomorphisme diagonalisable d'un $\mathbb{K}\text{-espace}$ vectoriel E de dimension finie.

Montrer que la restriction de f à tout sous-espace vectoriel $F \neq \{0\}$ stable est diagonalisable.

Exercice 269 [03038] [Correction]

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel pour lequel il existe une base $e=(e_1,\ldots,e_n)$ vérifiant

$$u(e_1) = e_1$$
 et $u(e_2) = e_1 + e_2$

L'endomorphisme u est-il diagonalisable?

Exercice 270 [00857] [Correction]

Soient f et g deux endomorphismes diagonalisables d'un \mathbb{K} -espace vectoriel E de dimension finie.

Montrer que f et g sont simultanément diagonalisables si, et seulement si, chaque sous-espace propre de l'un est stable par l'autre.

Exercice 271 [00858] [Correction]

Soient f et g deux endomorphismes diagonalisables d'un \mathbb{K} -espace vectoriel E de dimension finie.

Montrer que f et g commutent si, et seulement si, f et g sont simultanément diagonalisables.

Diagonalisabilités des polynômes en un endomorphisme

Exercice 272 [00859] [Correction]

Soient $P \in \mathbb{K}[X]$ et u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie.

- a) On suppose que u est diagonalisable, montrer que P(u) l'est aussi.
- b) Que dire de la réciproque?

Exercice 273 [00860] [Correction]

Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie.

a) On suppose que f est diagonalisable. Montrer que f^2 est diagonalisable et $\ker f = \ker f^2$.

On étudie désormais la propriété inverse.

- b) Par un exemple, montrer que si f^2 est diagonalisable, f n'est pas nécessairement diagonalisable.
- c) Montrer que si f^2 est diagonalisable et si $\ker f = \ker f^2$ alors f est diagonalisable.

Exercice 274 [00861] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$.

- a) Enoncer un critère de diagonalisabilité en terme de polynôme annulateur.
- b) On suppose $u \in \mathrm{GL}(E)$. Montrer que u est diagonalisable si, et seulement si, u^2 l'est.
- c) Généralisation : Soit $P \in \mathbb{C}[X]$. On suppose $P'(u) \in GL(E)$ Montrer que u est diagonalisable si, et seulement si, P(u) l'est.

Exercice 275 [00862] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie et u un endomorphisme de E. Soit P un polynôme complexe, on suppose que P(u) est diagonalisable et que la valeur prise par P sur toute racine complexe de P' n'est pas valeur propre de l'endomorphisme P(u).

Montrer que u est diagonalisable.

Exercice 276 [02524] [Correction]

Soient $A, B \in \mathrm{GL}_n(\mathbb{C})$ telles que $B = A^p$.

Montrer que A est diagonalisable si, et seulement si, B l'est.

Trigonalisabilité et polynôme annulateur

Exercice 277 [00866] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que 0 soit la seule valeur propre de A.

- a) Montrer que $A^n = 0$.
- b) Calculer $\det(A + I_n)$.
- c) Soit $M \in GL_n(\mathbb{C})$ commutant avec A. Calculer $\det(A+M)$.
- d) Inversement, quelles sont les matrices A vérifiant :

$$\forall M \in \mathrm{GL}_n(\mathbb{C}), AM = MA \Rightarrow \det(A+M) = \det M?$$

Exercice 278 [03239] [Correction]

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ vérifiant

$$f^2 = f^3$$
 et dim ker $(f - Id) = 1$

Montrer l'existence d'une base de \mathbb{R}^3 dans laquelle la matrice de f est de la forme

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & \alpha \\ 0 & 0 & 0 \end{array}\right) \text{ avec } \alpha \in \{0, 1\}$$

Exercice 279 [00864] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{C})$ $(n \geqslant 3)$ vérifiant

$$rgA = 2$$
, $trA = 0$ et $A^n \neq O_n$

Montrer que A est diagonalisable.

Exercice 280 [01948] [Correction]

Trouver les matrices M de $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$trM = 0$$
 et $M^3 - 4M^2 + 4M = O_n$

Exercice 281 [02713] [Correction]

Trouver les A de $\mathcal{M}_n(\mathbb{C})$ telles que

$$A^3 - 4A^2 + 4A = 0$$
 et $trA = 8$

Nilpotence

Exercice 282 [00783] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ nilpotente.

- a) Calculer χ_A .
- b) Même question avec $A \in \mathcal{M}_n(\mathbb{R})$.

Exercice 283 [00863] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente.

- a) Montrer que A est semblable à une matrice triangulaire supérieure stricte.
- b) Le résultat est-il encore vrai pour $A \in \mathcal{M}_n(\mathbb{R})$?

Exercice 284 [03372] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On suppose que la matrice A est nilpotente et que la matrice B commute avec A. Que dire de $\operatorname{tr}(AB)$?

Exercice 285 [00867] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$.

- a) Montrer que $A^n = 0$.
- b) Calculer $\det(A + I_n)$.

Soit $M \in \mathcal{M}_n(\mathbb{C})$ tel que AM = MA.

- c) Calculer $\det(A+M)$ (on pourra commencer par le cas où $M \in \mathrm{GL}_n(\mathbb{C})$).
- d) Le résultat est-il vrai si M ne commute pas avec A?

Exercice 286 [01677] [Correction]

Soient $A \in \mathrm{GL}_n(\mathbb{C})$ et $N \in \mathcal{M}_n(\mathbb{C})$ nilpotente telles que

$$AN = NA$$

Montrer que

$$\det(A+N) = \det A$$

Exercice 287 [02724] [Correction]

Soit A une matrice carrée réelle d'ordre n. Montrer que A est nilpotente si, et seulement si,

$$\forall p \in [1, n], \operatorname{tr} A^p = 0$$

Exercice 288 [00865] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension n et $f \in \mathcal{L}(E)$.

a) Montrer que l'endomorphisme f est nilpotent si, et seulement si,

$$\mathrm{Sp}(f) = \{0\}$$

b) Montrer que l'endomorphisme f est nilpotent si, et seulement si,

$$\forall 1 \leqslant k \leqslant n, \operatorname{tr}(f^k) = 0$$

Exercice 289 [00837] [Correction]

Soit u un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie. Montrer que u possède une seule valeur propre si, et seulement si, il existe $\lambda \in \mathbb{C}$ tel que $u - \lambda \mathrm{Id}_E$ soit nilpotent.

Exercice 290 [02690] [Correction]

Soient A et B des matrices complexes carrées d'ordre n. On suppose les matrices $A+2^kB$ nilpotentes pour tout entier k tel que $0 \le k \le n$. Montrer que les matrices A et B sont nilpotentes.

Exercice 291 [00938] [Correction]

Soient $n \in \mathbb{N}^*$, A et B dans $\mathcal{M}_n(\mathbb{C})$ et $\lambda_1, \ldots, \lambda_n, \lambda_{n+1}$ deux à deux distincts dans \mathbb{C} . On suppose, pour $1 \leq i \leq n+1$, que $A+\lambda_i B$ est nilpotente. Montrer que A et B sont nilpotentes. Exercice 292 [03023] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

On note $\mathcal{I}_1 = \{P \in \mathbb{C}[X]/P(u) = 0\}$ et $\mathcal{I}_2 = \{P \in \mathbb{C}[X]/P(u) \text{ est nilpotent}\}.$

a) Montrer que \mathcal{I}_1 et \mathcal{I}_2 sont des idéaux non nuls de $\mathbb{C}[X]$.

On note P_1 et P_2 leurs générateurs unitaires respectifs.

- b) Etablir un lien entre P_1 et P_2 .
- c) Montrer l'existence de $Q \in \mathcal{I}_2$ tel que u Q(u) est diagonalisable

Exercice 293 [03095] [Correction]

Soit $\Phi: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}$ vérifiant

$$\forall A, B \in \mathcal{M}_2(\mathbb{R}), \Phi(AB) = \Phi(A)\Phi(B) \text{ et } \Phi\left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) \neq \Phi(I_2)$$

- a) Démontrer que $\Phi(O_2) = 0$.
- b) Si A est nilpotente, démontrer que $\Phi(A) = 0$.
- c) Soient $A \in \mathcal{M}_2(\mathbb{R})$ et B la matrice obtenue à partir de A en permutant les lignes de A.

Démontrer que $\Phi(B) = -\Phi(A)$.

d) Démontrer que A est inversible si, et seulement si, $\Phi(A) \neq 0$.

Exercice 294 [01956] [Correction]

Soient $n \ge 2$ et $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ où $a_{i,i+1} = 1$ pour $i \in \{1,\ldots,n-1\}$, les autres coefficients étant nuls.

- a) La matrice A est-elle diagonalisable?
- b) Existe-t-il $B \in \mathcal{M}_n(\mathbb{R})$ vérifiant $B^2 = A$?

Exercice 295 [03253] [Correction]

Soient n un entier naturel non nul et E un \mathbb{C} -espace vectoriel de dimension n.

a) Montrer qu'il existe un polynôme $P_n \in \mathbb{R}[X]$ vérifiant au voisinage de 0

$$\sqrt{1+x} = P_n(x) + O(x^n)$$

- b) Etablir que X^n divise alors le polynôme $P_n^2(X) X 1$.
- c) Soit f un endomorphisme de \tilde{E} vérifiant $f^{\tilde{n}} = \tilde{0}$.

Montrer qu'il existe un endomorphisme q de E vérifiant

$$g^2 = \mathrm{Id}_E + f$$

d) Soit maintenant f un endomorphisme de E ne possédant qu'une valeur propre $\lambda.$

Montrer que $(f - \lambda \mathrm{Id}_E)^n = \tilde{0}$ et conclure qu'il existe un endomorphisme g de E vérifiant

$$g^2 = f$$

Exercice 296 [03477] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- a) On suppose $A^3 = A^2$. Montrer que A^2 est diagonalisable et que $A^2 A$ est nilpotente.
- b) Plus généralement on suppose $A^{k+1}=A^k$ pour un certain entier k>0. Etablir l'existence d'un entier p>0 tel que A^p est diagonalisable et A^p-A nilpotente.

Exercice 297 [03763] [Correction]

Pour $n \geq 2$, on note H un hyperplan de $\mathcal{M}_n(\mathbb{K})$ ne contenant aucune matrice inversible.

- a) Montrer que H contient toutes les matrices nilpotentes.
- b) En déduire que tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ rencontre $\mathrm{GL}_n(\mathbb{K})$.

Exercice 298 [03765] [Correction]

Soient $A, M \in \mathcal{M}_n(\mathbb{C})$ avec M matrice nilpotente.

- a) On suppose $MA = O_n$. Montrer que les matrices A + M et A ont le même polynôme caractéristique.
- b) Même question en supposant cette fois-ci $AM = O_n$.

Exercice 299 [03616] [Correction]

Soient $n \in \mathbb{N}$ et $E = \mathcal{M}_n(\mathbb{C})$. On note $E^* = \mathcal{L}(E, \mathbb{C})$ le \mathbb{C} -espace vectoriel des formes linéaires sur E.

a) Montrer que $L: E \to E^*$, $A \mapsto L_A$ où L_A est la forme linéaire $M \mapsto \operatorname{tr}(AM)$ est un isomorphisme

d'espaces vectoriels. En déduire une description des hyperplans de E.

b) Soit $T \in \mathcal{M}_n(\mathbb{C})$ une matrice triangulaire supérieure non nulle et $H = \ker L_T$. On note T_n^+ (respectivement T_n^-) le sous-espace vectoriel des matrices triangulaires supérieures (respectivement inférieures) à diagonales nulles. Déterminer $H \cap T_n^+$.

En discutant selon que T possède ou non un coefficient non nul (au moins) hors de la diagonale, déterminer la dimension de $H \cap T_n^-$.

c) Une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est dite nilpotente s'il existe $k \in \mathbb{N}$ tel que $A^k = 0$.

Prouver que les éléments de $T_n^+ \cup T_n^-$ sont des matrices nilpotentes.

En déduire que H contient au moins n^2-n-1 matrices nilpotentes linéairement indépendantes.

d) Montrer que tout hyperplan de E contient au moins n^2-n-1 matrices nilpotentes linéairement indépendantes.

Enoncé fourni par le CENTRALE-SUPELEC (CC)-BY-NC-SA

Exercice 300 [03474] [Correction]

Soient \mathbb{K} un corps et A_1, A_2, \ldots, A_n des matrices de $\mathcal{M}_n(\mathbb{K})$ nilpotentes commutant deux à deux.

Montrer

$$A_1A_2\ldots A_n=O_n$$

Corrections

Exercice 1 : [énoncé]

Soit $y \in \text{Im} u$. Il existe $x \in E$ tel que y = u(x) et alors

$$v(y) = v(u(x)) = u(v(x)) \in \text{Im} u$$

Ainsi, Im u est stable par v.

Soit $x \in \ker u$. On a $u(x) = 0_E$ donc

$$u(v(x)) = v(u(x)) = v(0_E) = 0_E$$

et $v(x) \in \ker u$. Ainsi $\ker u$ est stable par v.

La réciproque est fausse, si u est un automorphisme il est certain que Im u = E et $\ker u = \{0_E\}$ seront stables par v alors qu'il n'y aucune raison que u et v commutent.

Exercice 2 : [énoncé]

Supposons $f \circ p = p \circ f$. Pour tout $x \in \ker p$, p(f(x)) = f(p(x)) = 0 donc $f(x) \in \ker p$.

Rappelons Imp = ker(p - Id). Pour tout $x \in \text{Im}p$, p(f(x)) = f(p(x)) = f(x) donc $f(x) \in \text{Im}p$.

Inversement. Supposons $\ker p$ et $\operatorname{Im} p$ stables par f. Pour tout $x \in E$, on peut écrire x = u + v avec $u \in \ker p$ et $v \in \operatorname{Im} p$. On a alors f(p(x)) = f(v) et p(f(x)) = p(f(u) + f(v)) = f(v) donc $p \circ f = f \circ p$.

Exercice 3 : [énoncé]

a) Soit $\vec{x} \in \ker f$, $f(g(\vec{x})) = g(f(\vec{x})) = g(0_E) = 0_E$ donc $g(\vec{x}) \in \ker f$. Ainsi $\ker f$ est stable par g.

Soit $\vec{y} \in \text{Im} f$. Il existe $x \in E$ tel que $\vec{y} = f(\vec{x})$ et alors

 $g(\vec{y}) = g(f(\vec{x})) = f(g(\vec{x})) \in \text{Im} f \text{ donc Im} f \text{ est stable par } g.$

- b) (\Rightarrow) immédiat via a).
- (⇐) Si Imp et kerp sont stables par f alors, puisque ces derniers sont supplémentaires dans E. Soit $\vec{x} \in E$, on peut écrire $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in \text{Im}p$ et $\vec{v} \in \text{ker}\,p$.

On a alors $(f \circ p)(\vec{x}) = f(p(\vec{u}) + p(\vec{v})) = f(\vec{u})$ et $p \circ f(\vec{x}) = p(f(\vec{u})) + p(f(\vec{v})) = f(\vec{u})$ car $f(\vec{u}) \in \text{Im} p$ et $f(\vec{v}) \in \text{ker } p$. Ainsi

$$\forall \vec{x} \in E, (f \circ p)(\vec{x}) = (p \circ f)(\vec{x})$$

puis p et f commutent.

Exercice 4: [énoncé]

a) Rappelons que les suites $(\ker u^p)_{p\in\mathbb{N}}$ et $(\operatorname{Im} u^p)_{p\in\mathbb{N}}$ sont respectivement croissante et décroissante pour l'inclusion. La suite $(\dim \ker u^p)_{p\in\mathbb{N}}$ est une suite croissante et majorée d'entiers naturels, elle est donc stationnaire :

 $\exists n \in \mathbb{N}, \forall p \geqslant n, \dim \ker u^p = \dim \ker u^n \text{ or } \ker u^p \supset \ker u^n \text{ donc } \ker u^p = \ker u^n$ puis $N = \ker u^n$. Aussi

 $\dim \operatorname{Im} u^p = \dim E - \dim \ker u^p = \dim E - \dim \ker u^n = \dim \operatorname{Im} u^n \text{ et } \operatorname{Im} u^p \subset \operatorname{Im} u^n$ donc $\operatorname{Im} u^p = \operatorname{Im} u^n \text{ puis } I = \operatorname{Im} u^n.$

b) $\dim N + \dim I = \dim \ker u^n + \dim \operatorname{Im} u^n = \dim E$ en vertu du théorème du rang. Soit $x \in N \cap I$. Il existe $a \in E$ tel que $x = u^n(a)$ et alors $u^n(x) = 0$ donc $u^{2n}(a) = 0$. Ainsi $a \in \ker u^{2n} = \ker u^n$ donc $x = u^n(a) = 0$. Ainsi $N \cap I = \{0\}$ d'où $E = N \oplus I$.

u et u^n commutent donc N et I sont stables par u.

 $(u_N)^n = (u^n)_{\ker u^n} = 0$ donc u_N est nilpotente.

 $\operatorname{Im} u^{n+1} = \operatorname{Im} u^n$ donne $u(\operatorname{Im} u^n) = \operatorname{Im} u^n$ donc u_I est surjective puis bijective car $\dim \operatorname{Im} u^n < +\infty$.

c) Par supplémentarité : $\dim E = \dim F + \dim G = \dim N + \dim I$.

Il existe $p \in \mathbb{N}$, tel que $(u_F)^p = 0$ donc $F \subset \ker u^p \subset N$.

 u_G est bijective donc $(u_G)^n$ aussi or $G = \operatorname{Im}(u_G)^n \subset \operatorname{Im}(u^n) = I$.

On a alors dim $F \leq \dim N$, dim $G \leq \dim I$ et dim $F + \dim G = \dim N + \dim I$ donc dim $F = \dim N$ et dim $G = \dim I$. Par inclusion et égalité des dimensions F = N et G = I.

Exercice 5: [énoncé]

a) $\ker u^{k-1}$ est un sous-espace vectoriel de $\ker u^k$ et comme on se place en dimension finie, tout sous-espace vectoriel admet un supplémentaire.

b)

- $E = \ker u^p = \ker u^{p-1} \oplus F_p = \ker u^{p-2} \oplus F_{p-1} \oplus F_p = \dots = \ker u^0 \oplus F_1 \oplus \dots \oplus F_p$ avec $\ker u^0 = \{0\}.$
- c) $\ker u^{k-1}$ dans $\ker u^k$. On a $E = \ker u^p = \ker u^{p-1} \oplus F_p = \ldots = F_1 \oplus \cdots \oplus F_p$. Dans une base adaptée à cette décomposition la matrice de u est :

$$\left(\begin{array}{ccc}
(0) & (\star) \\
& \ddots \\
(0) & (0)
\end{array}\right)$$

et c'est donc une matrice triangulaire supérieure stricte.

Exercice 6: [énoncé]

a) Supposons $\lambda a + \mu f(a) = 0_E$ (1)

En appliquant f, on obtient $-\mu a + \lambda f(a) = 0_E$ (2).

La combinaison $\lambda(1) - \mu(2)$ donne $(\lambda^2 + \mu^2)a = 0_E$, or $a \neq 0_E$ donc $\lambda = \mu = 0$ puisque $\lambda, \mu \in \mathbb{R}$.

b) Montrons par récurrence sur $k \in \mathbb{N}^*$ la propriété

« il existe a_1, \ldots, a_k non nuls tels que les espaces $F(a_1), \ldots, F(a_k)$ sont en somme directe »ou « il existe $p \in \mathbb{N}^*$ et il existe a_1, \ldots, a_p tel que $E = F(a_1) \oplus \cdots \oplus F(a_p)$ »

Pour k = 1 la propriété est claire car $E \neq \{0_E\}$.

Supposons la propriété établie au rang k.

Puisque la propriété est supposée vraie au rang k l'une des deux alternatives définissant celle-ci est vérifiée. Si c'est la seconde alors la propriété est immédiate vérifiée au rang k+1. Sinon, c'est qu'il existe a_1, \ldots, a_k vecteurs non nuls de E tels que les espaces $F(a_1), \ldots, F(a_k)$ sont en somme directe.

Si $E = F(a_1) \oplus \cdots \oplus F(a_k)$ alors la propriété est vérifiée au rang k+1 en choisissant p = k.

Sinon, il existe $a_{k+1} \in E$ tel que $a_{k+1} \notin F(a_1) \oplus \cdots \oplus F(a_k)$.

Montrons qu'alors les espaces $F(a_1), \ldots, F(a_k), F(a_{k+1})$ sont en somme directe.

Supposons $x_1 + \dots + x_k + x_{k+1} = 0_E$ (1) avec $x_j = \lambda_j a_j + \mu_j f(a_j) \in F(a_j)$.

En appliquant f, on obtient $y_1 + \cdots + y_k + y_{k+1} = 0_E$ (2) avec

 $y_j = -\mu_j a_j + \lambda_j f(a_j).$

La combinaison $\lambda_{k+1}(1) - \mu_{k+1}(2)$ donne alors

 $(\lambda_{k+1}^2 + \mu_{k+1}^2)a_{k+1} \in F(a_1) \oplus \cdots \oplus F(a_k)$ et donc $\lambda_{k+1} = \mu_{k+1} = 0$ car on a choisi $a_{k+1} \notin F(a_1) \oplus \cdots \oplus F(a_k)$.

On en déduit $x_{k+1} = 0_E$ et la relation (1) devient $x_1 + \cdots + x_k = 0_E$ qui donne $x_1 = \ldots = x_k = 0_E$ car les espaces $F(a_1), \ldots, F(a_k)$ sont en somme directe. Récurrence établie.

c) Ce qui précède assure dim E = 2p et dans la base $(a_1, f(a_1), \dots, a_p, f(a_p))$, la matrice de f est diagonale par blocs avec des blocs diagonaux égaux à

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

Exercice 7: [énoncé]

a) L'image d'un endomorphisme est toujours stable par celui-ci...En effet

$$\forall x \in \mathrm{Im} u, u(x) \in \mathrm{Im} u$$

b) Si $x \in \text{Im} u$ alors il existe $a \in E$ tel que x = u(a). On a alors

$$u^{2}(x) = u^{3}(a) = -u(a) = -x$$

c) En vertu de ce qui précède, $v^2 = -\text{Id}$ donc v est un isomorphisme et $v^{-1} = -v$.

d) D'une part

$$\det(v^{-1}) = \frac{1}{\det v}$$

et d'autre part

$$\det(-v) = (-1)^{\dim \operatorname{Im} u} \det v$$

donc

$$(-1)^{\dim \operatorname{Im} u} > 0$$

On en déduit que la dimension de l'image de u est paire.

Exercice 8 : [énoncé]

Les $\mathbb{K}_n[X]$ et $\mathbb{K}[X]$ sont des sous-espaces vectoriels stables pour l'endomorphisme de dérivation.

Soit F un sous-espace vectoriel stable.

Si F est de dimension finie alors les polynômes de F sont de degrés bornés.

Soit P un polynôme de F de degré n maximal. On a $F \subset \mathbb{K}_n[X]$.

Or la famille des polynômes $P, P', P'', \dots, P^{(n)}$ est de degrés étagés et formés d'éléments de F car F est stable pour la dérivation donc

 $\mathbb{K}_n[X] = \operatorname{Vect}(P, P', \dots, P^{(n)}) \subset F \text{ puis } F = \mathbb{K}_n[X].$

Si F n'est pas de dimension finie alors pour tout $m \in \mathbb{N}$, $F \not\subset \mathbb{K}_m[X]$ et donc il existe $P \in F$ tel que $n = \deg P > m$. Or en raisonnant comme ci-dessus, on démontre $\mathbb{K}_n[X] \subset F$ et donc $\mathbb{K}_m[X] \subset F$. Ainsi $\forall m \in \mathbb{N}$, $\mathbb{K}_m[X] \subset F$ donc $F = \mathbb{K}[X]$.

Finalement les $\mathbb{K}_n[X]$ et $\mathbb{K}[X]$ sont les seuls sous-espace vectoriels stables pour l'endomorphisme de dérivation.

Exercice 9 : [énoncé]

- a) Si x est vecteur propre de u alors D = Vect(x) est stable par u. C'est contraire à l'hypothèse de travail car D est un sous-espace vectoriel non nul distinct de E. On en déduit que u ne possède pas de valeurs propres.
- b) Puisque $x \neq 0_E$, il existe un plus grand entier $p \geqslant 1$ tel que la famille $(x, u(x), \ldots, u^{p-1}(x))$ est libre.

Par définition de p, on a alors $(x, u(x), \dots, u^{p-1}(x), u^p(x))$ liée et donc $u^p(x) \in \text{Vect}(x, u(x), \dots, u^{p-1}(x))$. On en déduit que le sous-espace vectoriel $F = \text{Vect}(x, u(x), \dots, u^{p-1}(x))$ est stable par u.

Puisque ce sous-espace vectoriel est non nul, on a F = E et donc par dimension p = n. Au final, la famille $(x, u(x), \dots, u^{n-1}(x))$ est une base de E.

La matrice de u dans cette base a la forme suivante

$$\begin{pmatrix} 0 & \cdots & 0 & a_0 \\ 1 & & (0) & \vdots \\ & \ddots & & \vdots \\ (0) & & 1 & a_{n-1} \end{pmatrix}$$

avec a_k les scalaires donnés par la relation

$$u^{n}(x) = a_{0}x + a_{1}u(x) + \dots + a_{n-1}u^{n-1}(x)$$

c) En composant la relation précédente avec u, on obtient

$$\forall 0 \le k \le n - 1, u^n(u^k(x)) = a_0 u^k(x) + a_1 u(u^k(x)) + \dots + a_{n-1} u^{n-1}(u^k(x))$$

Puisque la famille $(x, u(x), \dots, u^{n-1}(x))$ est une base de E, on en déduit

$$\forall y \in E, u^n(y) = a_0 y + a_1 u(y) + \dots + a_{n-1} u^{n-1}(y)$$

On en déduit que pour $y \neq 0_E$, la matrice de u dans la base $(y, u(y), \dots, u^{n-1}(y))$ est la même que la précédente.

Exercice 10: [énoncé]

- a) Le cas n=1 est immédiat car v est alors nécessairement nul. Le cas v=0 est tout aussi immédiat.
- b) $F = \operatorname{Im} v$ est stable par u et v et puisque v n'est pas bijectif, $1 \leqslant \dim F < n$: on pourra donc appliquer l'hypothèse de récurrence sur F. Dans une base adaptée à F, les matrices de u et v sont de la forme

$$\begin{pmatrix} A & B \\ \hline O & C \end{pmatrix}$$
 et $\begin{pmatrix} D & E \\ \hline O & O \end{pmatrix}$

On a alors $det(u+v) = det(A+D) \times det C$.

c) A et D sont associées aux endomorphismes induits par u et v sur F. Ces endomorphismes induits vérifient les hypothèses initiales et donc $\det(A+D) = \det A$ puis $\det(u+v) = \det A \times \det C = \det u$.

Exercice 11: [énoncé]

Montrons par récurrence sur $k \in \mathbb{N}^{\star}$

$$E = S + \operatorname{Im} u^k$$

La propriété est vraie par hypothèse pour k=1. Supposons la propriété vraie au rang $k \geqslant 1$. On a évidemment

$$S + \operatorname{Im} u^{k+1} \subset E$$

Inversement, soit $x \in E$. Par hypothèse de récurrence, on peut écrire

$$x = a + u^k(b)$$
 avec $a \in S$ et $b \in E$

Or, on peut aussi écrire

$$b = a' + u(c)$$
 avec $a' \in S$ et $c \in E$

On en déduit

$$x = a + u^{k}(a') + u^{k+1}(c) \in S + \operatorname{Im} u^{k+1}$$

car $a+u^k(a')\in S$ puisque S est un sous-espace vectoriel stable par u. Ainsi $E\subset S+\mathrm{Im} u^{k+1}$ puis l'égalité.

Récurrence établie.

En appliquant cette propriété à l'indice de nilpotence de u, on obtient

$$E = S$$

Exercice 12 : [énoncé]

- a) $\operatorname{Im} u$ est stable pour u donc u_{E_2} est bien défini. Par le théorème du rang la restriction de u à tout supplémentaire de $\ker u$ définit un isomorphisme avec $\operatorname{Im} u$. Ici cela donne u_{E_2} automorphisme.
- b) Soient $u, v \in \Gamma$. Si $x \in \ker(v \circ u)$ alors $u(x) \in \operatorname{Im} u \cap \ker v$ donc $u(x) \in E_1 \cap E_2$ et u(x) = 0 puis $x \in E_1$. Ainsi $\ker(v \circ u) \subset E_1$ et l'inclusion réciproque est immédiate.

 $\operatorname{Im}(v \circ u) = v(u(E)) = v(E_2) = E_2$ car v_{E_2} est un automorphisme de E_2 . Ainsi $v \circ u \in \Gamma$.

- c) Si $\phi(u) = \phi(v)$ alors $u_{E_2} = v_{E_2}$. Or $u_{E_1} = 0 = v_{E_1}$ donc les applications linéaires u et v coïncident sur des sous-espaces vectoriels supplémentaires et donc u = v.
- d) Une application linéaire peut être définit de manière unique par ses restrictions linéaires sur deux sous-espaces vectoriels supplémentaires. Pour $w \in GL(E_2)$ considérons $u \in \mathcal{L}(E)$ déterminé par $u_{E_1} = 0$ et $u_{E_2} = w$. On vérifie aisément $E_1 \subset \ker u$ et $E_2 \subset \operatorname{Im} u$. Pour $x \in \ker u$, x = a + b avec $a \in E_1$ et $b \in E_2$. La relation u(x) = 0 donne alors u(a) + u(b) = 0 c'est-à-dire w(b) = 0. Or $w \in GL(E_2)$ donc b = 0 puis $x \in E_1$. Ainsi $\ker u \subset E_1$ et finalement $\ker u = E_1$. Pour $y \in \operatorname{Im}(u)$, il existe $x \in E$ tel que y = u(x). Or on peut écrire x = a + b avec $a \in E_1$ et $b \in E_2$. La relation y = u(x) donne alors $y = u(a) + u(b) = w(b) \in E_2$.

Ainsi $\text{Im} u \subset E_1$ et finalement $\text{Im} u = E_1$. On peut conclure que $u \in \Gamma$ et $\tilde{u} = w : \phi$ est surjectif.

e) φ est un morphisme bijectif : il transporte la structure de groupe existant sur $\mathrm{GL}(E_2)$ en une structure de groupe sur (Γ, \circ) . Le neutre est l'antécédent de Id_{E_2} c'est-à-dire la projection sur E_2 parallèlement à E_1 .

Exercice 13: [énoncé]

a) L'application T est évidemment linéaire et est à valeurs dans E. Soit $g \in E$. Montrons que l'équation Tf = g admet une solution unique. Unicité : Si Tf = g alors $x \mapsto \int_0^x f(t) \, \mathrm{d}t$ est solution sur $\mathbb R$ de l'équation différentielle linéaire y' + y = g vérifiant y(0) = 0. Par le théorème de Cauchy ceci détermine $x \mapsto \int_0^x f(t) \, \mathrm{d}t$ de façon unique et donc f aussi. Existence : La dérivée de la fonction solution y' + y = g vérifiant y(0) = 0 est solution.

b) Soit F un sous-espace vectoriel de dimension finie stable par T. Notons I l'endomorphisme de E défini par $I(f): x \mapsto \int_0^x f(t) \, \mathrm{d}t$. Puisque F est stable par T, F est aussi stable par I. L'endomorphisme induit par I sur le sous-espace vectoriel de dimension finie F admet un polynôme minimal $\pi = X^n + a_{n-1}X^{n-1} + \dots + a_0$. On a alors pour tout $f \in F$ l'égalité $y + a_{n-1}y' + \dots + a_ny^{(n)} = 0$ en notant $y = I^n(f)$. De plus, on a les conditions initiales $y(0) = \dots = y^{(n-1)}(0) = 0$ ce qui donne y = 0 puis f = 0. Ainsi $F = \{0\}$. Finalement, l'espace nul est le seul espace de dimension finie stable par T. Quel intérêt au « impaire » ?

Exercice 14: [énoncé]

a) Si la matrice A est magique alors, par simple calcul des coefficients, AU=sU et ${}^tUA=s{}^tU$.

Inversement, si $AU = \lambda U$ et ${}^tUA = \mu^tU$ alors

$$\forall i \in [\![1,n]\!], \sum_{j=1}^n a_{i,j} = \lambda \text{ et } \forall j \in [\![1,n]\!], \sum_{i=1}^n a_{i,j} = \mu$$

De plus, ${}^tUAU = {}^tU(AU) = \lambda {}^tUU = n\lambda$ et ${}^tUAU = ({}^tUA)U = \mu {}^tUU = n\mu$. On en déduit $\lambda = \mu$ et la matrice A est magique.

b) Pour le produit scalaire canonique sur $\mathcal{M}_{n,1}(\mathbb{R})$ défini par $\langle X,Y\rangle={}^tXY$, l'espace H se comprend comme l'hyperplan de vecteur normal U et donc $D=H^{\perp}$. c) Si A est magique alors U est vecteur propre de A. Ainsi $D=\mathrm{Vect}(U)$ est stable par A. Aussi, on a la relation ${}^tAU=\mu U$ et donc U est vecteur propre de tA . La droite D est stable par tA et donc $H=D^{\perp}$ est stable par tA .

La réciproque est immédiate car une droite vectorielle est stable si, et seulement si, elle est engendrée par un vecteur propre.

d) Si l'on introduit une matrice P de passage de la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ vers une base adaptée à l'écriture $\mathcal{M}_{n,1}(\mathbb{R}) = D \oplus H$, l'étude au-dessus assure qu'une matrice A est magique si, et seulement si, $P^{-1}AP$ est de la forme

$$\begin{pmatrix} \alpha & 0 \\ 0 & M \end{pmatrix} \text{ avec } \alpha \in \mathbb{R} \text{ et } M \in \mathcal{M}_{n-1}(\mathbb{R})$$

On en déduit que l'espace des matrices magiques est de dimension

$$1 + (n-1)^2$$

Exercice 15: [énoncé]

Soient E un \mathbb{R} -espace vectoriel de dimension 3 muni d'une base \mathcal{B} et u l'endomorphisme de E représenté par la matrice A dans \mathcal{B} . On a $u^2 = 0$ et $u \neq 0$. Notons que cela entraı̂ne dim Imu = 1 et dim ker u = 2.

Cherchons une base $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ telle que $\operatorname{Mat}_{\mathcal{B}'}(u) = B$. Après analyse du problème : Considérons $\varepsilon_1 \notin \ker(u)$ et $\varepsilon_2 = u(\varepsilon_1)$. ε_2 est un vecteur non nul de $\ker u$ qui peut être complétée en une base $(\varepsilon_2, \varepsilon_3)$ de $\ker u$. Formons $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$. Si $\lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2 + \lambda_3 \varepsilon_3 = 0$ alors en appliquant u, $\lambda_1 u(\varepsilon_1) = 0$ donc $\lambda_1 = 0$ puis $\lambda_2 \varepsilon_2 + \lambda_3 \varepsilon_3 = 0$ entraîne $\lambda_2 = \lambda_3 = 0$ puisque $(\varepsilon_2, \varepsilon_3)$ est libre. Finalement la famille \mathcal{B}' est libre et c'est donc bien une base de E. La matrice de u dans cette base est bien la matrice B. On peut conclure.

Exercice 16: [énoncé]

Soient E un \mathbb{K} -espace vectoriel de dimension n muni d'une base \mathcal{B} et $f \in \mathcal{L}(E)$ de matrice A dans \mathcal{B} .

On vérifie $f^{n-1} \neq 0$ et $f^n = 0$.

Soit $x \notin \ker f^{n-1}$. Un tel x existe puisque $f^{n-1} \neq 0$.

Considérons $\mathcal{B}' = (f^{n-1}(x), \dots, f(x), x).$

Supposons

$$\lambda_{n-1}f^{n-1}(x) + \dots + \lambda_1f(x) + x = 0$$

En y appliquant successivement f^{n-1}, \ldots, f , Id on obtient $\lambda_0 = 0, \ldots, \lambda_{n-2} = 0$ puis $\lambda_{n-1} = 0$ car $f^{n-1}(x) \neq 0$.

 \mathcal{B}' est une famille libre formée de $n=\dim E$ vecteurs, c'est donc une base de E. La matrice de f dans la base \mathcal{B}' est égale à B.

Les matrices A et B sont donc semblables.

Exercice 17: [énoncé]

Soient E un \mathbb{K} -espace vectoriel de dimension n muni d'une base \mathcal{B} et $f \in \mathcal{L}(E)$ de matrice A dans \mathcal{B} .

On observe que $\operatorname{Im} f$ et $\ker f$ sont supplémentaires dans E.

Dans une base $\mathcal B$ adaptée à cette supplémentarité, la matrice de f est de la forme

$$B = \left(\begin{array}{cc} A' & 0\\ 0 & 0 \end{array}\right)$$

avec A' matrice de taille r. De plus r = rgA = rgA = rgA' donc A' est inversible.

Exercice 18: [énoncé]

Soient E un \mathbb{K} -espace vectoriel de dimension n muni d'une base \mathcal{B} et $f \in \mathcal{L}(E)$ de matrice A dans \mathcal{B} .

On observe r = rgf, $f \neq 0$ et $f^2 = 0$ de sorte que $Im f \subset \ker f$.

Soit (e_1, \ldots, e_r) une base de Imf complétée en (e_1, \ldots, e_{n-r}) base de $\ker f$.

Pour tout $i \in \{1, ..., r\}$, il existe e_{n-r+i} vecteur de E tel que $f(e_{n-r+i}) = e_i$. Montrons que $(e_1, ..., e_n)$ est libre.

Supposons

 $\lambda_1 e_1 + \dots + \lambda_r e_r + \lambda_{r+1} e_{r+1} + \dots + \lambda_{n-r} e_{n-r} + \lambda_{n-r+1} e_{n-r+1} + \dots + \lambda_n e_n = 0$ (1).

En appliquant f à la relation (1), on obtient $\lambda_{n-r+1}e_1 + \cdots + \lambda_n e_r = 0$ et donc $\lambda_{n-r+1} = \ldots = \lambda_n = 0$ car (e_1, \ldots, e_r) libre.

La relation (1) devient $\lambda_1 e_1 + \cdots + \lambda_r e_r + \lambda_{r+1} e_{r+1} + \cdots + \lambda_{n-r} e_{n-r} = 0$ et donc $\lambda_1 = \ldots = \lambda_{n-r} = 0$ car (e_1, \ldots, e_{n-r}) libre.

La famille (e_1, \ldots, e_n) est libre et formée de $n = \dim E$ vecteurs de E c'est donc une base de E et la matrice de f dans celle-ci est égale à B. On peut conclure que A et B sont semblables.

Exercice 19: [énoncé]

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associé à la matrice A.

Analyse : Cherchons une base (e_1, e_2, e_3) telle que la matrice de f dans cette base soit la matrice

$$\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)$$

On a alors $f(e_1) = 0$, $f(e_2) = e_3$ et $f(e_3) = -e_2$. On en déduit $e_1 \in \ker f$, $e_2 \in \ker(f^2 + \operatorname{Id})$ et $e_3 = f(e_2)$.

Synthèse : L'endomorphisme f vérifie $f \circ (f^2 + \mathrm{Id}) = 0$. Par l'absurde, si f est inversible alors $f^2 + \mathrm{Id} = 0$ et donc $\det(f^2) = \det(-\mathrm{Id}) = -1$. Or

 $\det(f^2) = (\det f)^2 \geqslant 0$. C'est absurde. On en déduit $\ker f \neq \{0\}$. Soit e_1 un vecteur non nul de $\ker f$.

Puisque $(f^2 + \mathrm{Id}) \circ f = 0$, on a $\mathrm{Im} f \subset \ker(f^2 + \mathrm{Id})$. Or $f \neq 0$ donc $\mathrm{Im} f \neq \{0\}$ puis $\ker(f^2 + \mathrm{Id}) \neq \{0\}$.

Soit e_2 un vecteur non nul de $\ker(f^2 + \operatorname{Id})$ et $e_3 = f(e_2)$. On

vérifie $f(e_3) = f^2(e_2) = -e_2$.

Il reste à observer que la famille (e_1, e_2, e_3) est une base de \mathbb{R}^3 .

Supposons $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0$ (1) avec $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$.

En appliquant deux fois f à cette relation, on obtient $\lambda_2 e_3 - \lambda_3 e_2 = 0$ (2) et $-\lambda_2 e_2 - \lambda_3 e_3 = 0$ (3).

La combinaison d'équations $\lambda_3(2) + \lambda_2(3)$ donne $(\lambda_3^2 + \lambda_2^2)e_2 = 0$.

Puisque le vecteur e_2 a été choisi non nul, on en déduit $\lambda_2=\lambda_3=0$ puis la

relation (1) donne $\lambda_1 = 0$ puisque le vecteur e_1 a été choisi non nul.

Finalement, (e_1, e_2, e_3) est une base de \mathbb{R}^3 et la matrice de f dans celle-ci est celle voulue.

On peut conclure que A est semblable à la matrice proposée.

Exercice 20 : [énoncé]

Soit $f \in \mathcal{L}(\mathbb{R}^4)$ l'endomorphisme canoniquement associé à la matrice M.

Analyse : Cherchons une base (e_1, e_2, e_3, e_4) telle que :

 $f(e_1) = e_2, f(e_2) = -e_1, f(e_3) = e_4 \text{ et } f(e_4) = -e_3.$

La connaissance de e_1 et e_3 suffit pour former e_2 et e_4 avec les quatre relations voulues.

Synthèse :

Prenons $e_1 \neq 0$, $e_2 = f(e_1)$, $e_3 \notin Vect(e_1, e_2)$ et $e_4 = f(e_3)$.

Supposons $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 + \lambda_4 e_4 = 0$ i.e. $\lambda_1 e_1 + \lambda_2 f(e_1) + \lambda_3 e_3 + \lambda_4 f(e_3) = 0$ (1).

En appliquant l'endomorphisme $f: \lambda_1 f(e_1) - \lambda_2 e_1 + \lambda_3 f(e_3) - \lambda_4 e_3 = 0$ (2).

 $\lambda_3(1) - \lambda_4(2)$ donne $(\lambda_3\lambda_1 + \lambda_2\lambda_4)e_1 + (\lambda_3\lambda_2 - \lambda_4\lambda_1)f(e_1) + (\lambda_3^2 + \lambda_4^2)e_3 = 0.$

Puisque $e_3 \notin \text{Vect}(e_1, e_2)$, on a $\lambda_3^2 + \lambda_4^2 = 0$ d'où $\lambda_3 = \lambda_4 = 0$.

(1) et (2) donne alors $\lambda_1 e_1 + \lambda_2 f(e_1) = 0$ et $\lambda_1 f(e_1) - \lambda_2 e_1 = 0$.

Comme ci-dessus on parvient à $\lambda_1^2 + \lambda_2^2 = 0$ d'où $\lambda_1 = \lambda_2 = 0$.

Finalement (e_1, e_2, e_3, e_4) est une base convenable. On peut conclure que M est semblable à la matrice proposée.

Exercice 21 : [énoncé]

Raisonnons par récurrence sur $n \in \mathbb{N}^*$.

Pour n = 1: ok

Supposons la propriété établie au rang $n \ge 1$.

Soient $A \in \mathcal{M}_{n+1}(\mathbb{R})$ de trace nulle et $f \in \mathcal{L}(\mathbb{R}^{n+1})$ l'endomorphisme canoniquement associé.

Si f est une homothétie vectorielle (i.e. de la forme $\lambda \mathrm{Id}_E$) alors $f=\tilde{0}$ car $\mathrm{tr} f=0$ et on peut alors conclure.

Sinon, il existe un vecteur x tel que f(x) ne soit pas colinéaire à x. En représentant f dans une base dont x et f(x) sont les deux premiers vecteurs, on obtient que la matrice A est semblable à la matrice

$$M = \left(\begin{array}{c|c} 0 & \star \\ \hline \star & A' \end{array}\right)$$

avec $A' \in \mathcal{M}_n(\mathbb{R})$ de trace nulle.

Par hypothèse de récurrence, il existe P inversible tel que $P^{-1}A'P$ soit de diagonale nulle. En considérant la matrice inversible

$$Q = \begin{pmatrix} 1 & 0 \\ \hline 0 & P \end{pmatrix}$$
 avec $Q^{-1} = \begin{pmatrix} 1 & 0 \\ \hline 0 & P^{-1} \end{pmatrix}$

on obtient que la matrice M est semblable à

$$Q^{-1}\left(\begin{array}{c|c} 0 & \star \\ \hline \star & A' \end{array}\right)Q = \left(\begin{array}{ccc} 0 & & \star \\ & \ddots & \\ \star & & 0 \end{array}\right)$$

Finalement, la matrice A est semblable à une matrice à coefficients diagonaux tous nuls.

Récurrence établie.

Exercice 22: [énoncé]

a) Soit f l'endomorphisme de \mathbb{K}^n canoniquement associé à A. On a

$$\mathrm{rg}f=\mathrm{rg}A=1$$

et donc par la formule du rang

$$\dim \ker f = n - 1$$

Si $\mathcal B$ est une base adaptée à $\ker f$, la matrice de f dans cette base a ses n-1 premières colonnes nulles.

b) On peut écrire $A=PBP^{-1}$ avec P matrice inversible et B une matrice de la forme

$$\begin{pmatrix}
0 & \cdots & 0 & \star \\
\vdots & & \vdots & \vdots \\
\vdots & & \vdots & \star \\
0 & \cdots & 0 & \lambda
\end{pmatrix}$$

On a alors

$$\lambda = \text{tr}B = \text{tr}A$$

Puisque $B^2 = \lambda B$, on a

$$P^{-1}A^2P = \text{tr}(A).P^{-1}AP$$

puis

$$A^2 = \operatorname{tr}(A).A$$

Puisque $\det(I_n + B) = 1 + \lambda$, on a

$$\det(P^{-1})\det(I_n+A)\det P=1+\operatorname{tr} A$$

puis

$$\det(I_n + A) = 1 + \operatorname{tr} A$$

Exercice 23 : [énoncé]

Posons $D=\operatorname{diag}(1,2,\ldots,n)$. L'étude, coefficient par coefficient, de la relation MD=DM donne que les matrices commutant avec D sont les matrices diagonales. Parmi les matrices diagonales, celles qui sont semblables à D sont celles qui ont les mêmes coefficients diagonaux

Exercice 24 : [énoncé]

Il existe $P \in \operatorname{GL}_n(\mathbb{C})$ vérifiant PA = BP. En posant $Q = \operatorname{Re}(P)$ et $R = \operatorname{Im}(P)$ on obtient QA + iRA = BQ + iBR donc QA = BQ et RA = BR car A, B, Q, R réelles. Cependant on ne sait pas si Q ou R sont inversibles. Or pour tout $\lambda \in \mathbb{R}$, $(Q + \lambda R)A = B(Q + \lambda R)$ et $\lambda \mapsto \det(Q + \lambda R)$ est une fonction polynomiale non nulle car $\det(Q + iR) \neq 0$ donc il existe $\lambda \in \mathbb{R}$ tel que $Q + \lambda R$ est inversible et on peut conclure.

Exercice 25 : [énoncé]

Commençons par déterminer $f(I_n)$ et $f(O_n)$.

On a $f(I_n) = f(I_n^2) = f(I_n)^2$ donc $f(I_n) = 0$ ou 1.

Si $f(I_n) = 0$ alors pour tout $A \in \mathcal{M}_n(\mathbb{C})$, $f(A) = f(A \times I_n) = f(A) \times f(I_n) = 0$ et donc f est constante ce qui est exclu. Ainsi $f(I_n) = 1$.

Aussi $f(O_n) = f(O_n^2) = f(O_n) \times f(O_n)$ donc $f(O_n) = 0$ ou 1.

Si $f(O_n) = 1$ alors pour tout $A \in \mathcal{M}_n(\mathbb{C})$,

 $f(A) = f(O_n) \times f(A) = f(O_n \times A) = f(O_n) = 1$ et donc f est constante ce qui est exclu. Ainsi $f(O_n) = 0$.

Si A est inversible alors $f(I_n) = f(A \times A^{-1})$ donne $f(A) \times f(A^{-1}) = 1$ et donc $f(A) \neq 0$.

La réciproque est plus délicate.

Supposons A non inversible et posons r = rgA.

La matrice A est équivalente à la matrice

$$J_r = \left(\begin{array}{cc} I_r & O_{r,n-r} \\ O_{n-r,r} & O_{n-r} \end{array}\right)$$

ce qui permet d'écrire $A=QJ_rP$ avec P,Q inversibles. On a alors $f(A)=f(Q)f(J_r)f(P)$ et il suffit de montrer $f(J_r)=0$ pour conclure. Par permutation des vecteurs de bases, la matrice J_r est semblable à toute matrice diagonale où figure r coefficients 1 et n-r coefficients 0. En positionnant, pertinemment les coefficients 0, on peut former des matrices A_1,\ldots,A_p toutes semblables à J_r vérifiant

$$A_1 \dots A_p = O_n$$

On a alors

$$f(A_1)\dots f(A_p)=0$$

Or il est facile d'établir que si deux matrices sont semblables, la fonction f prend les mêmes valeurs sur celles-ci. Par suite $f(J_r) = f(A_1) = \ldots = f(A_p)$ et ainsi $f(J_r)^p = 0$ puis enfin $f(J_r) = 0$.

Exercice 26: [énoncé]

On vérifie aisément que \mathcal{C} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ car c'est le noyau de l'endomorphisme $M \mapsto AM - MA$.

Puisque $A^2 = O_3$, on a $\text{Im} A \subset \ker A$.

Puisque $A \neq O_3$, la formule du rang et l'inclusion précédente montre

$$rgA = 1$$
 et $\dim \ker A = 2$

Soient $X_1 \in \text{Im}A$ non nul, X_2 tel que (X_1, X_2) soit base de ker A et X_3 un antécédent de X_1 . En considérant la matrice de passage P formée des colonnes X_1, X_2, X_3 , on a

$$P^{-1}AP = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right) = B$$

En raisonnant par coefficients inconnus, on obtient que les matrices N vérifiant BN=NB sont de la forme

$$N = \left(\begin{array}{ccc} a & b & c \\ 0 & b' & c' \\ 0 & 0 & a \end{array}\right)$$

Par suite les matrice M vérifiant AM = MB sont celle de la forme

$$M = P \begin{pmatrix} a & b & c \\ 0 & b' & c' \\ 0 & 0 & a \end{pmatrix} P^{-1}$$

L'espace \mathcal{C} est donc de dimension 5 et l'on en forme une base à l'aide des matrices

$$M_{1} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}, M_{2} = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}, M_{3} = P \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}$$

$$M_{4} = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} P^{-1} \text{ et } M_{5} = P \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}$$

Exercice 27 : [énoncé]

 $trA \neq trB$ dont A et B ne sont pas semblables.

Exercice 28 : [énoncé]

Notons E la matrice correspondant à l'élément neutre de (G, \times) . Celle-ci est nécessairement non nulle car sinon la partie G serait réduite à la matrice nulle. Puisque la matrice E est neutre, on a $E^2 = E$ et donc E est la matrice d'une projection. En posant $r = \operatorname{rg} E \in \mathbb{N}^*$, il existe $P \in \operatorname{GL}_n(\mathbb{R})$ telle que

$$E = PJ_rP^{-1}$$
 avec $J_r = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$

Pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$, on peut écrire par blocs

$$M = P \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) P^{-1}$$

L'identité EM = M = ME donne la nullité des blocs B, C et D. On peut alors introduire l'application $\varphi : G \to \mathcal{M}_r(\mathbb{R})$ qui associe à $M \in G$ le bloc A de la description ci-dessus. On vérifie aisément que l'application φ est injective et que

$$\forall M, N \in G, \varphi(MN) = \varphi(M) \times \varphi(N)$$

Enfin, on a aussi $\varphi(E) = I_r$ de sorte qu'on peut affirmer que l'image de φ est un sous-groupe de $(GL_r(\mathbb{R}), \times)$. Le groupe (G, \times) alors isomorphe à ce sous-groupe.

Exercice 29: [énoncé]

En vertu du théorème d'isomorphisme

 $0 \in \operatorname{sp}(f) \Leftrightarrow f$ non injectif $\Leftrightarrow f$ non surjectif

Exercice 30: [énoncé]

 $0 \in \operatorname{sp}(f^n) \Rightarrow f^n \text{ non injective } \Rightarrow f \text{ non injective } \Rightarrow 0 \in \operatorname{sp}(f).$

Exercice 31 : [énoncé]

Si $\lambda \in \text{Sp} u$ alors il existe $x \neq 0$ vérifiant $u(x) = \lambda x$. En appliquant u^{-1} , on obtient $x = \lambda u^{-1}(x)$.

Puisque $x \neq 0$, $\lambda \neq 0$ et on peut écrire $u^{-1}(x) = \frac{1}{\lambda}x$ donc $\frac{1}{\lambda} \in \text{Sp}u^{-1}$. Ainsi

$$\{1/\lambda/\lambda \in \operatorname{Sp} u\} \subset \operatorname{Sp} u^{-1}$$

L'autre inclusion s'obtient par symétrie.

Exercice 32 : [énoncé]

Pour $\lambda \in \mathbb{K}$ et $x \in E$,

$$x \in E_{\lambda}(v) \Leftrightarrow u(a^{-1}(x)) = \lambda a^{-1}(x) \Leftrightarrow a^{-1}(x) \in E_{\lambda}(u) \Leftrightarrow x \in a(E_{\lambda}(u))$$

Ainsi $E_{\lambda}(v) = a(E_{\lambda}(u)).$

Puisque a est un automorphisme, on peut affirmer $E_{\lambda}(v) \neq \{0\}$ si, et seulement si, $E_{\lambda}(u) \neq \{0\}$. Ainsi

$$\operatorname{Sp}(u) = \operatorname{Sp}(v)$$

Exercice 33 : [énoncé]

On a la propriété

$$\forall x \neq 0_E, \exists \lambda_x \in \mathbb{K}, u(x) = \lambda_x x$$

Montrer que $x \mapsto \lambda_x$ est une fonction constante sur $E \setminus \{0\}$. Soient $x, y \neq 0_E$. Si (x, y) est libre u(x + y) = u(x) + u(y) donne $\lambda_{x+y}(x + y) = \lambda_x x + \lambda_y y$ donc par liberté de (x, y) on obtient $\lambda_x = \lambda_{x+y} = \lambda_y$.

Si (x, y) est liée, $y = \mu x$ et donc $u(y) = \mu u(x) = \lambda_x \mu x = \lambda_x y$ puis $\lambda_y = \lambda_x$. Ainsi $x \mapsto \lambda_x$ est une fonction constante. En posant λ la valeur de cette constante, on a $\forall x \in E$, $u(x) = \lambda x$ que x soit nul ou non.

Exercice 34 : [énoncé]

a) Il existe $x \neq 0_Z$, vérifiant

$$u(v(x)) = \lambda x$$

On a alors

$$(v \circ u)(v(x)) = \lambda v(x)$$

Or $v(x) \neq 0_E$ car $u(v(x)) \neq 0_E$ et $u(0_E) = 0_E$.

On en déduit que λ est valeur propre de $v \circ u$.

b) On observe

$$u \circ v(P) = P \text{ et } v \circ u(P) = P - P(0)$$

On en déduit

$$\ker(u \circ v) = \{0\} \text{ et } \ker(v \circ u) = \mathbb{R}_0[X]$$

En substance, la propriété précédente ne vaut pas pour $\lambda=0$ en dimension quelconque.

c) Cependant, en dimension finie, si 0 est valeur propre de $u \circ v$ alors $\det(u \circ v) = 0$ et donc $\det(v \circ u) = 0$ d'où 0 valeur propre de $v \circ u$.

Exercice 35 : [énoncé]

Cas $\lambda = 0$

 $\det(u\circ v)=0$ entraı̂ne $\det(v\circ u)=0$ ce qui donne la propriété.

Cas $\lambda \neq 0$

Si x est vecteur propre associé à la valeur propre λ alors $u(v(x)) = \lambda x$ donne $v(u(v(x))) = \lambda v(x)$.

De plus $\lambda x \neq 0$ entraı̂ne $v(x) \neq 0$ et donc λ est valeur propre de $v \circ u$.

Exercice 36 : [énoncé]

- a) Une récurrence facile donne $A^kB BA^k = kA^k$.
- b) A^k est vecteur propre de l'endomorphisme considéré si, et seulement si, $A^k \neq 0$.
- c) L'endomorphisme $M\mapsto MB-BM$ opère en dimension finie, il ne peut donc avoir qu'un nombre fini de valeurs propres et donc il existe $k\in\mathbb{N}$ vérifiant $A^k=0$.

Exercice 37 : [énoncé]

a) On vérifie $f^k \circ g - g \circ f^k = kf^k$.

Si pour tout $k \in \mathbb{N}$, $f^k \neq 0$ alors l'endomorphisme $h \mapsto h \circ g - g \circ h$ admet une infinité de valeurs propres.

Ceci étant impossible en dimension finie, on peut affirmer que f est nilpotent.

b) $f^n=0$ (car dim E=n) et $f^{n-1}\neq 0$. Pour $x\notin \ker f^{n-1}$ et $e'=(f^{n-1}(x),\ldots,f(x),x)$, on montre classiquement que e' est une base de E dans laquelle la matrice de f est telle que voulue.

 $f(g(f^{n-1}(x)) = 0 \text{ donc } g(f^{n-1}(x)) = \lambda f^{n-1}(x) \text{ pour un certain } \lambda \in \mathbb{R}$ Aussi $f^k(g(f^{n-1-k}(x))) = (\lambda + k)f^{n-1}(x)$ et donc la matrice de g dans e' et triangulaire supérieure avec sur la diagonale $\lambda, \lambda + 1, \ldots, \lambda + n - 1$. Ainsi

$$\operatorname{Sp}(g) = \{\lambda, \dots, \lambda + n - 1\}$$

Soit y vecteur propre associé à la valeur propre $\lambda+n-1$. Si $y\in\ker f^{n-1}$ alors puisque $\ker f^{n-1}$ est stable par $g,\,\lambda+n-1$ est valeur propre de l'endomorphisme induit par g sur $\ker f^{n-1}$. Cela n'étant par le cas $y\notin\ker f^{n-1}$. On vérifie alors facilement que la famille $e=(f^{n-1}(y),\ldots,f(y),y)$ résout notre problème.

Exercice 38 : [énoncé]

a) Puisque $u \circ v = v \circ u$ les sous-espaces propres de u sont stables par v. Puisque E est un \mathbb{C} -espace vectoriel, u admet une valeur propre et le sous-espace propre associé est stable par v. L'endomorphisme induit par v sur celui-ci admet une valeur propre et ceci assure l'existence d'un vecteur propre commun à u et v. b) $u \circ v - v \circ u = au$.

Si u est inversible alors $u \circ v \circ u^{-1} - v = a \operatorname{Id}_E$ et donc $\operatorname{tr}(u \circ v \circ u^{-1}) - \operatorname{tr}v = a \dim E$.

Or $tr(u \circ v \circ u^{-1}) = trv$ ce qui entraı̂ne une absurdité.

On en déduit que u est non inversible.

Par récurrence sur $n \in \mathbb{N}$, on obtient

$$u^n \circ v - v \circ u^n = nau^n$$

L'endomorphisme $\varphi: w \mapsto w \circ v - v \circ w$ n'admet qu'un nombre fini de valeurs propres car opère en dimension finie. Si u n'est pas nilpotent alors pour tout $n \in \mathbb{N}$, na est valeur propre de φ . C'est absurde et donc u est nilpotent. Enfin, soit $x \in \ker u$. On a u(v(x)) = v(u(x)) + au(x) = 0 donc $v(x) \in \ker u$. Par suite $\ker u \neq \{0\}$ est stable v et un vecteur propre de l'endomorphisme induit est vecteur propre commun à u et v.

c) $u \circ v - v \circ u = au + bv$.

Si a = 0 il suffit de transposer l'étude précédente.

Si $a \neq 0$, considérons w = au + bv.

On a

$$(au + bv) \circ v - v \circ (au + bv) = a(u \circ v - v \circ u) = a(au + bv)$$

Par l'étude qui précède, au+bv et v ont un vecteur propre en commun puis u et v ont un vecteur propre en commun.

Exercice 39 : [énoncé]

 $Cas \ a = b = 0$

Les endomorphismes f et g commutent donc les sous-espaces propres de l'un sont stables pour l'autre. Puisque le corps de base est \mathbb{C} , l'endomorphisme f admet au moins une valeur propre λ . L'espace $E_{\lambda}(f) \neq \{0\}$ est stable par g donc on peut introduire l'endomorphisme induit par g sur $E_{\lambda}(f)$ et ce dernier admet aussi au moins une valeur propre. Un vecteur propre associé à cette valeur propre de g est aussi un vecteur propre de f car élément non nul de $E_{\lambda}(f)$. Ainsi f et g ont un vecteur propre commun.

Cas a = 0 et $b \neq 0$

Par récurrence, on obtient $f \circ g^n - g^n \circ f = nbg^n$ pour tout $n \in \mathbb{N}$. L'application $u \in \mathcal{L}(E) \mapsto f \circ u - u \circ f$ est un endomorphisme de $\mathcal{L}(E)$ or dim $\mathcal{L}(E) < +\infty$ donc cet endomorphisme n'admet qu'un nombre fini de valeur propre. Cependant, pour chaque $n \in \mathbb{N}$ tel que $g^n \neq \tilde{0}$, le scalaire nb est valeur propre de cet endomorphisme, on en déduit qu'il existe $n \in \mathbb{N}$ tel que $g^n = \tilde{0}$ et en particulier ker $g \neq \{0\}$.

On vérifie aisément que $\ker g$ est stable par f et un vecteur propre de l'endomorphisme induit par f sur $\ker g$ est alors vecteur propre commun à f et g. Cas b=0 et $a\neq 0$

Semblable

Cas $a \neq 0$ et $b \neq 0$

On a

$$f\circ (af+bg)-(af+bg)\circ f=b(f\circ g-g\circ f)=b(af+bg)$$

Par l'étude qui précède, f et af + bg admettent un vecteur propre commun et celui-ci est alors vecteur propre commun à f et g.

Exercice 40 : [énoncé]

a) u admet une valeur propre λ et le sous-espace propre associé est stable par v. Cela assure que u et v ont un vecteur propre en commun e_1 . On complète celui-ci en une base (e_1,e_2,\ldots,e_n) . Les matrices de u et v dans cette base sont de la

forme
$$A = \begin{pmatrix} \lambda & \star \\ 0 & A' \end{pmatrix}$$
 et $B = \begin{pmatrix} \mu & \star \\ 0 & B' \end{pmatrix}$. Considérons les endomorphismes u' et v' de $E' = \text{Vect}(e_2, \ldots, e_n)$ représentés par A' et B' dans (e_2, \ldots, e_n) . $AB = BA$ donne $A'B' = B'A'$ et donc $[u', v'] = 0$. Cela permet d'itérer la méthode jusqu'à

obtention d'une base de cotrigonalisation.

b) Par récurrence, on vérifie $[u^k, v] = k\lambda u^k$. L'endomorphisme $w \mapsto [w, v]$ de $\mathcal{L}(E)$ ne peut avoir une infinité de valeurs propres donc il existe $k \in \mathbb{N}^*$ tel que $u^k = 0$. L'endomorphisme u est nilpotent donc ker $u \neq \{0\}$ ce qui permet d'affirmer que u et v ont un vecteur propre commun. On peut alors reprendre la démarche de la question a) sachant qu'ici $A'B' - B'A' = \lambda A'$.

Corrections

c) Si $\alpha = 0$, l'étude qui précède peut se reprendre pour conclure. Si $\alpha \neq 0$, on introduit $w = \alpha u + \beta v$ et on vérifie $[w, v] = \alpha w$. Ainsi w et v sont cotrigonalisables puis u et v aussi cas $u = \frac{1}{\alpha}(w - \beta v)$.

Exercice 41: [énoncé]

a) Il suffit de procéder par récurrence en exploitant $f^{n+1} \circ g - g \circ f^{n+1} = f \circ (nf^n + g \circ f^n) + (I - f \circ g) \circ f^n$.

b) Par linéarité $P(f) \circ g - g \circ P(f) = P'(f)$.

Ainsi si P annule f alors P' aussi. Ceci est impossible en dimension finie car le polynôme minimal d'un endomorphisme annule celui-ci et est de degré minimal. Notons qu'un argument de calcul de trace est de loin plus rapide et plus simple! c) $f \circ q(P) = (XP)' = XP' + P$ et $q \circ f(P) = XP'$ donc $(f \circ q - q \circ f)(P) = P$.

Exercice 42 : [énoncé]

a) Par récurrence

$$f^n \circ g - g \circ f^n = nf^n$$

b) Par linéarité

$$P(f) \circ g - g \circ P(f) = f \circ P'(f)$$

Par suite, si P(f) = 0, alors $f \circ P'(f) = 0$.

c) Soit π le polynôme minimal de l'endomorphisme f.

 π annule f donc $X\pi'$ aussi. Par minimalité de π , $\pi \mid X\pi'$. Pour des raisons de degré et de coefficients dominants, $\alpha\pi = X\pi'$ avec $\alpha = \deg \pi$. On en déduit $\pi = X^{\alpha}$ et donc f est nilpotent.

Exercice 43: [énoncé]

a) Soit λ une valeur propre de l'endomorphisme T.

Il existe une matrice M non nulle vérifiant $T(M) = \lambda M$.

On a alors $MA = (A + \lambda I_n)M$.

Par une récurrence facile, $MA^p = (A + \lambda I_n)^p M$.

Or pour un certain $p \in \mathbb{N}^*$, $A^p = O_n$ donc $(A + \lambda I_n)^p M = O_n$.

Cependant la matrice M n'est pas nulle donc la matrice $(A + \lambda I_n)^p$ n'est pas inversible puis la matrice $A + \lambda I_n$ ne l'est pas non plus. Ainsi λ est valeur propre de A et donc $\lambda = 0$ car 0 est la seule valeur propre d'une matrice nilpotente. On en déduit $\operatorname{Sp} T \subset \{0\}$ puis $\operatorname{Sp} T = \{0\}$ car le corps de base $\mathbb C$ assure l'existence d'au moins une valeur propre.

Le polynôme caractéristique de T étant scindé dans $\mathbb{C}[X]$ et de degré n^2 , on a $\chi_T = (-1)^{n^2} X^{n^2}$ puis $T^{n^2} = \tilde{0}$ car le polynôme caractéristique est annulateur en vertu du théorème de Cayley Hamilton.

Finalement, l'endomorphisme T est nilpotent.

b) Pour $g = \operatorname{Id}_E$ on a $T = \tilde{0}$.

Ainsi l'endomorphisme T est nilpotent alors que g ne l'est pas.

La réciproque est fausse.

Exercice 44: [énoncé]

a) Par récurrence, on obtient

$$\forall n \in \mathbb{N}^*, A^n B - B A^n = n A^{n-1} C$$

On en déduit

$$\forall P \in \mathbb{K}[X], P(A)B - BP(A) = P'(A)C$$

Si la matrice A est diagonalisable, elle annule un polynôme scindé à racine simple P et donc

$$P'(A)C = 0$$

Puisque les racines de P sont simples, les valeurs propres de A ne sont pas racine de P' et une diagonalisation de A permet d'affirmer

$$\det P'(A) \neq 0$$

Puisque la matrice P'(A) est inversible, l'identité P'(A)C = 0 donne C = 0.

b) Supposons C diagonalisable.

Notons a,b,c les endomorphismes de \mathbb{R}^n canoniquement associés aux matrices A,B,C.

Soit λ une valeur propre de C. Le sous-espace propre $E_{\lambda}(c)$ est stables par les endomorphismes a et b car la matrice C commute avec A et B. Notons a_{λ} et b_{λ} les endomorphismes induits associés. On a

$$a_{\lambda} \circ b_{\lambda} - b_{\lambda} \circ a_{\lambda} = \lambda \operatorname{Id}_{E_{\lambda}(c)}$$

En considérant la trace, on obtient

$$\lambda \dim E_{\lambda}(c) = 0$$

On en déduit que seule 0 est valeur propre de C et donc la matrice diagonalisable C est nulle.

Exercice 45 : [énoncé]

a) Δ est évidemment linéaire de $\mathcal{M}_p(\mathbb{R})$ dans lui-même.

En exploitant

$$\Delta(BC) = ABC - BCA = (AB - BA)C + B(AC - CA) = \Delta(B)C + B\Delta(C)$$

on montre la relation

$$\Delta^{n}(MN) = \sum_{k=0}^{n} \binom{n}{k} \Delta^{k}(M) \Delta^{n-k}(N)$$

en raisonnant par récurrence comme pour établir la formule de Leibniz.

b) AB = BA donne directement $\Delta(B) = 0$ et donc $\Delta^2(H) = 0$. La relation $\Delta^{n+1}(H^n) = 0$ s'obtient alors en raisonnant par récurrence et en observant que les termes sommés sont nuls dans la relation

$$\Delta^{n+1}(H^n) = \Delta^{n+1}(HH^{n-1}) = \sum_{k=0}^{n+1} \binom{n+1}{k} \Delta^k(H) \Delta^{n+1-k}(H^{n-1})$$

L'identité $\Delta^n(H^n)=n!B^n$ s'obtient aussi par récurrence et un calcul assez analogue.

c) Considérons une norme sous-multiplicative (par équivalence des normes en dimension finie, cela ne change rien au problème). On a

$$||B^n|| = \frac{1}{n!} ||\Delta^n(H^n)||$$

L'application linéaire Δ étant continue, on peut introduire $k \ge 0$ vérifiant

$$\forall M \in \mathcal{M}_p(\mathbb{R}), \|\Delta(M)\| \leqslant k \|M\|$$

On a alors

$$||B^n|| \le \frac{1}{n!} k^n ||H^n|| \le \frac{1}{n!} (k ||H||)^n$$

puis

$$||B^n||^{1/n} \le \frac{1}{(n!)^{1/n}} (k ||H||) \xrightarrow[n \to +\infty]{} 0 \text{ car } n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

d) On peut plonger le problème dans le cadre complexe. Soit λ une valeur propre complexe de B et M une matrice de $\mathcal{M}_p(\mathbb{C})$ dont toutes les colonnes sont vecteurs propres de B associés à la valeur propre λ . On a

$$BM = \lambda M$$
 et donc $B^n M = \lambda^n M$ puis $||B^n M||^{1/n} = |\lambda| ||M||^{1/n}$. Or

$$||B^n M||^{1/n} \le ||B^n||^{1/n} ||M||^{1/n} \xrightarrow[n \to +\infty]{} 0$$

et on peut donc conclure $\lambda = 0$.

Puisque 0 est la seule valeur propre complexe de B, celle-ci est nilpotente (cf. théorème de Cayley-Hamilton).

Exercice 46 : [énoncé]

a) Soit $x \in \ker u$. On a $u(x) = 0_E$ et donc

$$u(v(x)) = u(x) + v(u(x)) = 0_E$$

Ainsi $v(x) \in \ker u$.

b) Si par l'absurde, l'endomorphisme u est inversible, on peut écrire

$$u \circ v \circ u^{-1} = v + \mathrm{Id}_E$$

En passant à la trace, on obtient

$$tr(v) = tr(v) + \dim E$$

Ceci est absurde. On en déduit $ker(u) \neq \{0\}$.

 $\ker(u)$ est stable v et non réduit à $\{0\}$. L'endomorphisme complexe induit par v sur cet espace de dimension finie admet donc une valeur propre λ . Si x est un vecteur propre associé, c'est un vecteur propre commun à u et v car

$$u(x) = 0_E$$
 et $v(x) = \lambda . x$

c) La conclusion qui précède vaut aussi pour une identité du type $u\circ v-v\circ u=au$ avec $a\neq 0.$

Dans le cas où a=0, la propriété est encore vraie en raisonnant cette fois-ci avec un sous-espace propre de u (stable par v car on est en situation où u et v commutent).

Si $u \circ v - v \circ u = au + bv$ avec $b \neq 0$ alors, en considérant w = au + bv, on a $u \circ w - w \circ u = bw$. Les endomorphismes u et w ont un vecteur propre en commun et celui-ci est aussi vecteur propre de v.

Finalement, on retient

$$u \circ v - v \circ u \in \text{Vect}(u, v) \Rightarrow u \text{ et } v \text{ ont un vecteur propre en commun}$$

On peut alors en déduire que ces deux endomorphismes sont cotrigonalisables en raisonnant par récurrence sur la dimension de E. En bref (car c'est assez long à rédiger), si l'on complète le vecteur propre précédent en une base de E, les endomorphismes u et v seront figurés par des matrices

$$\left(\begin{array}{cc} \lambda & \star \\ 0 & A \end{array}\right) \text{ et } \left(\begin{array}{cc} \mu & \star \\ 0 & B \end{array}\right)$$

La relation $u\circ v-v\circ u\in \mathrm{Vect}(u,v)$ donne, par calcul par blocs, $AB-BA\in \mathrm{Vect}(A,B).$ On applique l'hypothèse de récurrence aux matrices A et B:

$$P^{-1}AP = T$$
 et $P^{-1}BP = T'$ avec P inversible de taille $n-1$

On transpose ensuite cette solution aux matrices précédentes via la matrice inversible

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & P \end{array}\right)$$

Exercice 47 : [énoncé]

Soient $\lambda \in \mathbb{R}$ et $f \in E$. On a

$$D(f) = \lambda f \Leftrightarrow f$$
 est solution de l'équation différentielle $y' = \lambda y$

Les solutions de l'équation $y' = \lambda y$ sont les fonctions de la forme $t \mapsto Ce^{\lambda t}$. Ainsi

$$\operatorname{Sp}(D) = \mathbb{R} \text{ et } E_{\lambda}(D) = \operatorname{Vect}(t \mapsto e^{\lambda t})$$

Exercice 48 : [énoncé]

Soient $\lambda \in \mathbb{C}$ et $u \in E$. Etudions l'équation $f(u) = \lambda u$. On a

$$f(u) = \lambda u \Leftrightarrow \begin{cases} (1 - \lambda)u_0 = 0 \\ \forall n \in \mathbb{N}^*, (2\lambda - 1)u_n = u_{n-1} \end{cases}$$

Cas $\lambda = 1$

$$f(u) = u \Leftrightarrow \forall n \in \mathbb{N}^*, u_n = u_{n-1}$$

On en déduit que 1 est valeur propre de f et que le sous-espace propre associé est formé des suites constantes.

Cas $\lambda \neq 1$

$$f(u) = \lambda u \Leftrightarrow \begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}^*, (2\lambda - 1)u_n = u_{n-1} \end{cases}$$

Que $\lambda = 1/2$ ou non, on obtient

$$f(u) = \lambda u \Leftrightarrow \forall n \in \mathbb{N}, u_n = 0$$

et donc λ n'est pas valeur propre.

Finalement

$$\operatorname{Sp} f = \{1\}$$

Exercice 49 : [énoncé]

Soient $\lambda \in \mathbb{R}$ et $u \in E$.

$$\Delta(u) = \lambda u \Leftrightarrow \forall n \in \mathbb{N}, u(n+1) = (1+\lambda)u(n)$$

Ainsi

$$\Delta(u) = \lambda u \Leftrightarrow \forall n \in \mathbb{N}, u(n) = u_0(1+\lambda)^n$$

Pour $\lambda \in]-2,0[$, la suite $u(n)=(1+\lambda)^n$ est élément non nul de E et vérifie $\Delta(u)=\lambda u.$

Pour $\lambda \notin]-2,0[$, seule la suite nulle est converge vers 0 et satisfait

$$\forall n \in \mathbb{N}, u(n) = u_0(1+\lambda)^n$$

On peut donc conclure

$$Sp(\Delta) =]-2, 0[$$

Exercice 50 : [énoncé]

Soient $\lambda \in \mathbb{R}$ et $f \in E$. Si $I(f) = \lambda f$ alors I(f) est solution de l'équation différentielle

$$y = \lambda y'$$

Si $\lambda = 0$ alors I(f) = 0.

Si $\lambda \neq 0$ alors I(f) est de la forme $x \mapsto Ce^{x/\lambda}$ et puisque I(f) s'annule en 0 donc I(f) = 0.

Dans les deux cas f = I(f)' = 0. Ainsi

$$Sp(I) = \emptyset$$

Exercice 51 : [énoncé]

Soit λ un réel et f une fonction élément de E.

Si $T(f) = \lambda f$ alors

$$\forall x \in [0, +\infty[\,, f(x+1) = \lambda f(x)]$$

En passant cette relation à la limite quand $x \to +\infty$, on obtient

$$\ell = \lambda \ell$$

en notant ℓ la limite de f.

Cas $\ell \neq 0$:

Nécessairement $\lambda = 1$ et

$$\forall x \in [0, +\infty[, f(x+1) = f(x)]$$

Puisque la fonction f est périodique et converge en $+\infty$, elle est constante. Inversement, toute fonction constante non nulle est vecteur propre associé à la valeur propre 1.

Cas $\ell = 0$:

Si λ est valeur propre alors en introduisant f vecteur propre associé, il existe $x_0 \in [0, +\infty[$ tel que $f(x_0) \neq 0$ et la relation $T(f) = \lambda f$ donne par récurrence

$$\forall n \in \mathbb{N}, f(x_0 + n) = \lambda^n f(x_0)$$

En faisant tendre n vers $+\infty$, on obtient $|\lambda| < 1$. Inversement, supposons $|\lambda| < 1$.

Si $T(f) = \lambda f$ alors

$$f(1) = \lambda f(0)$$
 et $\forall n \in \mathbb{N}, \forall x \in [0, 1], f(x+n) = \lambda^n f(x)$

La fonction f est donc entièrement déterminée par sa restriction continue sur [0,1] vérifiant $f(1) = \lambda f(0)$.

Inversement, si $\varphi : [0,1] \to \mathbb{R}$ est une fonction continue sur [0,1] vérifiant $\varphi(1) = \lambda \varphi(0)$ alors la fonction f donnée par

$$\forall n \in \mathbb{N}, \forall x \in [0,1], f(x+n) = \lambda^n \varphi(x)$$

et continue (on vérifie la continuité en $k \in \mathbb{N}^*$ par continuité à droite et à gauche), converge vers 0 en $+\infty$ et vérifie $T(f) = \lambda f$.

Puisqu'il est possible de construire une fonction non nulle de la sorte, le scalaire $\lambda \in]-1,1[$ est valeur propre et les vecteurs propres associés sont les fonctions non nulles de la forme précédente.

Exercice 52: [énoncé]

a) $\varphi(f)$ est dérivable sur $\mathbb{R}^{+\star}$ donc continue sur $\mathbb{R}^{+\star}$.

Puisque f est continue, f admet une primitive F et alors quand $x \to 0^+$

$$\varphi(f)(x) = \frac{F(x) - F(0)}{x} \to F'(0) = f(0) = 0$$

On en déduit que $\varphi(f)$ est continue en 0.

La linéarité de φ est immédiate et donc φ est un endomorphisme de E. b) Soient $\lambda \in \mathbb{R}$ et f une fonction de E non nulle vérifiant $\varphi(f) = \lambda f$. Pour tout $x \in \mathbb{R}^+$,

$$\int_0^x f(t) \, \mathrm{d}t = \lambda x f(x)$$

donc f est de classe \mathcal{C}^1 et vérifie

$$(1 - \lambda)f(x) = \lambda x f'(x)$$

Le cas $\lambda = 0$ implique f = 0 et est donc exclu.

Pour $\lambda \neq 0$ et x > 0 on a

$$xf'(x) = \alpha f(x)$$

avec $\alpha = (1 - \lambda)/\lambda$ dont la résolution conduit à

$$f(x) = Cx^{\alpha}, x \in]0, +\infty[$$

Pour $\alpha = 0$ ou $\alpha < 0$ la condition $\lim_{0} f = 0$ entraı̂ne f = 0 et est donc exclue. Par contre le cas $\alpha > 0$ (correspondant à $\lambda \in [0,1[$) conduit au vecteur propre

$$f(x) = Cx^{\alpha}, x \in [0, +\infty[$$

élément de E.

Exercice 53 : [énoncé]

a) T(f) est dérivable sur $\mathbb{R}^{+\star}$ donc continue sur $\mathbb{R}^{+\star}$.

Puisque f est continue, f admet une primitive F et alors quand $x \to 0^+$

$$T(f)(x) = \frac{F(x) - F(0)}{x} \to F'(0) = f(0)$$

On en déduit que T(f) se prolonge en une fonction continue en 0.

La linéarité de T est immédiate et donc T est un endomorphisme de E.

b) Soient $\lambda \in \mathbb{R}$ et f une fonction de E non nulle vérifiant $T(f) = \lambda f$. Pour tout x > 0.

$$\int_0^x f(t) \, \mathrm{d}t = \lambda x f(x)$$

donc f est de classe \mathcal{C}^1 et vérifie

$$(1 - \lambda)f(x) = \lambda x f'(x)$$

Le cas $\lambda = 0$ implique f = 0 et est donc exclu.

Pour $\lambda \neq 0$ et x > 0 on a

$$xf'(x) = \alpha f(x)$$

avec $\alpha = (1 - \lambda)/\lambda$ dont la résolution conduit à

$$f(x) = Cx^{\alpha}, x \in]0, +\infty[$$

Pour $\alpha < 0$ la condition $\lim_{\Omega} f = 0$ entraı̂ne f = 0 et est donc exclue.

Par contre le cas $\alpha \geqslant 0$ (correspondant à $\lambda \in [0,1]$) conduit aux vecteurs propres

$$f(x) = Cx^{\alpha}, x \in [0, +\infty[, C \neq 0]]$$

éléments de E.

Exercice 54: [énoncé]

Puisque f est de classe C^1 et que f(0) = 0, on peut écrire

$$f(t) = f'(0)t + o(t)$$
 quand $t \to 0$

Ainsi la fonction $\varphi: t \mapsto f(t)/t$ peut être prolongée par continuité en 0 et donc l'intégrale définissant T(f)(x) a un sens en tant qu'intégrale d'une fonction continue. De plus, la fonction T(f) apparaît alors comme la primitive s'annulant en 0 de cette fonction continue φ , c'est donc une fonction élément de E. Enfin, la linéarité de l'application T étant immédiate, on peut affirmer que T est un endomorphisme de E.

Soient $\lambda \in \mathbb{R}$.

Si $T(f) = \lambda f$ alors pour tout $x \in [0, +\infty[$,

$$T(f)(x) = \lambda f(x)$$

En dérivant cette relation, on obtient pour tout $x \in [0, +\infty[$

$$f(x) = \lambda x f'(x)$$

Si $\lambda = 0$ alors f est la fonction nulle et λ n'est pas valeur propre.

Si $\lambda \neq 0$, f est solution de l'équation différentielle $\lambda xy' = y$.

Cette dernière est une équation différentielle linéaire d'ordre 1 homogène dont la solution générale sur $]0,+\infty[$ est

$$y(x) = Cx^{1/\lambda}$$

Ainsi, il existe $C \in \mathbb{R}$ tel que pour tout x > 0,

$$f(x) = Cx^{1/\lambda}$$

Or pour qu'une telle fonction puisse être prolongée en une fonction de classe C^1 sur $[0, +\infty[$, il faut C = 0 ou $1/\lambda \ge 1$. Ainsi les valeurs propres de T sont les éléments de l'intervalle [0, 1].

Inversement, soient $\lambda \in]0,1]$ et la fonction $f_{\lambda}: x \mapsto x^{1/\lambda}$ prolongée par continuité en 0.

La fonction f_{λ} est de classe C^1 sur $[0, +\infty[$, s'annule en 0 et vérifie $T(f_{\lambda}) = \lambda f_{\lambda}$ sans être la fonction nulle.

Finalement, les valeurs propres de T sont exactement les éléments de l'intervalle]0,1].

Exercice 55 : [énoncé]

a) On peut écrire

$$T(f)(x) = \int_0^x t f(t) dt + x \int_x^1 f(t) dt$$

L'application T(f) apparaît alors comme continue (et même dérivable). Ainsi, l'application T opère de E dans E, elle de surcroît évidemment linéaire. b) Soient $\lambda \in \mathbb{R}$ et $f \in E$ vérifiant

$$T(f) = \lambda f$$

Cas $\lambda = 0$

On a T(f) = 0donc

$$\int_0^x tf(t) dt + x \int_x^1 f(t) dt = 0$$

En dérivant, on obtient

$$xf(x) - xf(x) + \int_{x}^{1} f(t) dt = \int_{x}^{1} f(t) dt = 0$$

En dérivant à nouveau, on obtient f=0. Ainsi 0 n'est pas valeur propre de T. Cas $\lambda \neq 0$

On a
$$T(f) = \lambda f$$

$$\int_0^x t f(t) dt + x \int_x^1 f(t) dt = \lambda f$$

En particulier, on peut affirmer que f(0) = 0 car T(f)(0) = 0.

Le premier membre de l'équation $T(f)=\lambda f$ est dérivable donc la fonction f est également dérivable et, en dérivant, on obtient la relation

$$\int_{x}^{1} f(t) \, \mathrm{d}t = \lambda f'(x)$$

En particulier f'(1) = 0.

Le premier membre de cette nouvelle équation étant dérivable, la fonction f est deux fois dérivable et on obtient en dérivant l'équation différentielle

$$\lambda f''(x) + f(x) = 0$$

Sous cas $\lambda < 0$

Sachant f(0) = 0, la résolution de l'équation différentielle donne

$$f(x) = A \operatorname{sh}\left(\frac{x}{\sqrt{|\lambda|}}\right)$$

La condition f'(1) = 0 entraı̂ne toujours f = 0 et donc un tel λ n'est pas valeur propre de T.

Sous cas $\lambda > 0$

Sachant f(0) = 0, on obtient par résolution de l'équation différentielle

$$f(x) = A \sin\left(\frac{x}{\sqrt{\lambda}}\right)$$

La condition f'(1) = 0 n'entraînera pas f = 0 que si

$$\sin\left(\frac{1}{\sqrt{\lambda}}\right) = 0$$

c'est-à-dire si, et seulement si,

$$\lambda = \frac{1}{(k\pi)^2}$$
 avec $k \in \mathbb{N}^*$

Notons qu'alors il est possible de remonter les précédents calculs et d'affirmer que

$$f: x \mapsto \sin(k\pi x)$$

est vecteur propre associé à la valeur propre $\lambda = 1/(k\pi)^2$

Exercice 56 : [énoncé]

a) L'application Φ est évidemment linéaire, il reste à voir qu'elle est à valeurs dans $\mathbb{R}_4[X]$.

Pour un polynôme P de degré inférieur à 4, le polynôme

 $(X^2-1)P'(X)-(4X+1)P(X)$ est de degré inférieur à 5 et, si a est le coefficient de X^4 dans P, le coefficient de X^5 dans $\Phi(P)$ est 4a-4a=0. Par suite Φ est bien à valeurs dans $\mathbb{R}_4[X]$ et c'est donc un endomorphisme de cet espace.

b) L'équation

$$y' = \left(\frac{5-\lambda}{2(x-1)} + \frac{3+\lambda}{2(x+1)}\right)y$$

est une équation différentielle linéaire d'ordre 1 de solution générale

$$y(x) = C |x - 1|^{(5-\lambda)/2} |x + 1|^{(3+\lambda)/2}$$

sur $I =]-\infty, -1[,]-1, 1[\text{ ou }]1, +\infty[.$

c) Pour $\lambda \in \mathbb{R}$, $\Phi(P) = \lambda P$ si, et seulement si, $P'(X) = \frac{4X + (1 + \lambda)}{X^2 - 1} P(X)$ i.e. si, et seulement si, la fonction polynomiale P est solution, par exemple sur $]1, +\infty[$, de l'équation différentielle

$$y' = \frac{4x + (1+\lambda)}{x^2 - 1}y$$

Or moyennant une décomposition en éléments simples et passage à l'opposé de λ , cette équation est celle précédemment résolue et le problème est alors de

déterminer pour quel paramètre $-\lambda$, la solution précédemment présentée est une fonction polynomiale de degré inférieur à 4. Les valeurs 3,1,-1,-3,-5 conviennent et ce sont donc des valeurs propres de Φ , de plus il ne peut y en avoir d'autres car dim $\mathbb{R}_4[X]=5$. Les vecteurs propres associés à ces valeurs propres λ sont les polynômes

$$C(X-1)^{\frac{5+\lambda}{2}}(X+1)^{\frac{3-\lambda}{2}}$$
 avec $C \neq 0$

Exercice 57: [énoncé]

L'application φ est évidemment linéaire et on vérifie en observant une simplification que φ transforme un polynôme de degré inférieur à n en un autre. L'application φ est donc bien un endomorphisme de $\mathbb{R}_n[X]$. Soient $\lambda \in \mathbb{R}$ et $P \in \mathbb{R}_n[X]$.

Pour résoudre l'équation $\varphi(P) = \lambda P$, on recherche les solutions polynomiales de degrés inférieurs à n à l'équation différentielle

$$(x^{2} - 1)y' - (nx + \lambda)y = 0$$

La solution générale de cette équation différentielle est

$$y(x) = C(x-1)^{\frac{n+\lambda}{2}} (x+1)^{\frac{n-\lambda}{2}}$$

Pour $\lambda = -n + 2k$ avec $k \in \{0, \dots, n\}$, on obtient une fonction polynomiale non nulle

$$P_{\lambda}(X) = C(X-1)^{k}(X+1)^{n-k} \text{ avec } C \neq 0$$

et donc λ est valeur propre de φ et les P_{λ} sont les vecteurs propres associés. Puisque dim $\mathbb{R}_n[X] = n + 1$, il ne peut y avoir d'autres valeurs propres (et l'endomorphisme φ est diagonalisable).

Exercice 58 : [énoncé]

- a) La linéarité est immédiate et sans peine $\deg(\phi(P)) \leq n$ pour $P \in \mathbb{R}_n[X]$.
- b) On a

$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k}$$

$$P'(X) = \sum_{k=1}^{n} \frac{P^{(k)}(a)}{(k-1)!} (X-a)^{k-1}$$

puis

$$\phi(P)(X) = \sum_{k=2}^{n} \frac{P^{(k)}(a)}{(k-1)!} (X-a)^k - 2\sum_{k=1}^{n} \frac{P^{(k)}(a)}{k!} (X-a)^k$$

donc

$$\phi(P)(X) = \sum_{k=3}^{n} (k-2) \frac{P^{(k)}(a)}{k!} (X-a)^{k} - 2P'(a)(X-a)$$

Ainsi

$$P \in \ker \phi \Leftrightarrow P'(a) = 0 \text{ et } \forall 3 \leqslant k \leqslant n, P^{(k)}(a) = 0$$

et donc

$$\ker \phi = \text{Vect}(1, (X - a)^2)$$

Aussi

$$P \in \operatorname{Im} \phi \Leftrightarrow P(a) = P''(a) = 0$$

et donc

$$\operatorname{Im} \phi = (X - a)^{3} \mathbb{R}_{n-3} [X] + \operatorname{Vect}(X - a)$$

c) On a

$$\phi(P) = \lambda P \Leftrightarrow \begin{cases} 0 = \lambda P(a) \\ -2P'(a) = \lambda P'(a) \\ (k-2)P^{(k)}(a) = \lambda P^{(k)}(a) \text{ pour } k \in \{2, \dots, n\} \end{cases}$$

Cette équation possède une solution non nulle si, et seulement si, $\lambda = 0$, $\lambda = -2$ et $\lambda = k - 2$ avec $k \in \{2, ..., n\}$.

Ainsi

$$Sp(\phi) = \{-2, 0, 1, \dots, n-2\}$$

On a $E_{-2}(\phi) = \text{Vect}(X - a)$, $E_0(\phi) = \text{ker } \phi$, $E_{k-2}(\phi) = \text{Vect}(X - a)^k$ pour $k \in \{3, ..., n\}$.

La somme des dimensions des sous-espaces propres vaut dim $\mathbb{R}_n[X]$: l'endomorphisme est diagonalisable.

En fait, la base des $(X-a)^k$ est base de diagonalisation de l'endomorphisme ϕ .

Exercice 59: [énoncé]

- a) Il suffit de calculer le polynôme caractéristique de f à partir d'une représentation matricielle triangulaire par blocs relative à une base adaptée à l'espace non nul E(f,a).
- b) La matrice A est de rang 1 donc 0 est valeur propre de A et par la formule du rang dim E(A,0)=3.

Le polynôme caractéristique de A étant de degré 4 et factorisable par X^3 , c'est un polynôme scindé. La somme des valeurs propres de A comptées avec multiplicité vaut alors ${\rm tr} A=10$.

Par suite 10 est valeur propre de A de multiplicité nécessairement 1. Finalement A est diagonalisable semblable à diag(0,0,0,10).

Exercice 60: [énoncé]

a) Si $B = P^{-1}AP$ alors

$$\chi_B(\lambda) = \det(\lambda P^{-1}P - P^{-1}AP) = \chi_A(\lambda)$$

b) Inversement $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ ne sont pas semblables mais ont même polynôme caractéristique.

Exercice 61 : [énoncé]

Soit G un supplémentaire de F. Dans une base adaptée à la décomposition $E=F\oplus G$, la matrice de u est triangulaire supérieure par blocs et en calculant le polynômes caractéristique de u par cette matrice on obtient immédiatement la propriété demandée.

Exercice 62: [énoncé]

a) Pour $x \in \mathbb{C}$,

$$\det(xI_n - AB) = \det A \det(xA^{-1} - B) = \det(xA^{-1} - B) \det A = \det(xI_n - BA)$$

donc

$$\chi_{AB}(x) = \chi_{BA}(x)$$

b) La matrice $A+\frac{1}{p}I_n$ n'est pas inversible seulement si -1/p est valeur propre de A. Puisque la matrice A ne possède qu'un nombre fini de valeurs propres, pour p assez grand on est sûr que $A+\frac{1}{p}I_n\in \mathrm{GL}_n(\mathbb{C})$. Comme vu ci-dessus, pour $x\in\mathbb{C}$,

$$\chi_{(A+\frac{1}{p}I_n)B}(x) = \chi_{B(A+\frac{1}{p}I_n)}(x)$$

En passant à la limite quand $p \to +\infty$, on obtient $\chi_{AB}(x) = \chi_{BA}(x)$. Ceci valant pour tout $x \in \mathbb{C}$, les polynômes χ_{AB} et χ_{BA} sont égaux.

Exercice 63: [énoncé]

D'une part

$$\begin{pmatrix} \lambda I_n & A \\ B & I_p \end{pmatrix} \begin{pmatrix} I_n & O_{n,p} \\ -B & I_p \end{pmatrix} = \begin{pmatrix} \lambda I_n - AB & A \\ O_{p,n} & I_p \end{pmatrix}$$

D'autre part

$$\begin{pmatrix} I_n & O_{n,p} \\ -B & \lambda I_p \end{pmatrix} \begin{pmatrix} \lambda I_n & A \\ B & I_p \end{pmatrix} = \begin{pmatrix} \lambda I_n & A \\ O_{p,n} & \lambda I_p - AB \end{pmatrix}$$

En passant au déterminant, on obtient

$$\det M = \chi_{AB}(\lambda) \text{ et } \lambda^p \det M = \lambda^n \chi_{BA}(\lambda)$$

et on en déduit

$$\lambda^p \chi_{AB}(\lambda) = \lambda^n \chi_{BA}(\lambda)$$

Exercice 64: [énoncé]

Dans le cas où

$$A = J_r = \left(\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right)$$

la propriété est immédiate en écrivant

$$B = \left(\begin{array}{cc} C & D \\ E & F \end{array}\right)$$

avec C bloc carré de taille r.

Dans le cas général, on peut écrire $A = QJ_rP$ avec r = rgA et P,Q inversibles.

$$X^{q}\chi_{AB}(X) = X^{q}\chi_{Q^{-1}ABQ}(X) = X^{q}\chi_{J_{r}PBQ}(X)$$

donc

$$X^{q}\chi_{AB}(X) = X^{p}\chi_{PBQJ_{r}}(X) = X^{p}\chi_{BQJ_{r}P}(X) = X^{p}\chi_{BA}(X)$$

Exercice 65 : [énoncé]

Il est bien connu que

$$\forall M, N \in \mathcal{M}_n(\mathbb{K}), \chi_{MN} = \chi_{NM}$$

On en déduit

$$\chi_{(AB)^p} = \chi_{[A(BA)^{p-1}]B} = \chi_{B[A(BA)^{p-1}]} = \chi_{(BA)^p}$$

Exercice 66 : [énoncé]

$$\chi_{A^{-1}}(x) = \det(xI_n - A^{-1}) = \det A^{-1} \det(xA - I_n) = \frac{(-x)^n}{\det A} \det\left(\frac{1}{x}I - A\right)$$

Or $det(A) = (-1)^n \chi_A(0)$ donc

$$\chi_{A^{-1}}(x) = \frac{x^n}{\chi_A(0)} \chi_A(1/x)$$

Exercice 67 : [énoncé]

On a

$$\chi_{A\bar{A}}(X) = \det(XI_n - A\bar{A})$$

donc en conjuguant

$$\overline{\chi_{A\bar{A}}}(X) = \det(XI_n - \bar{A}A) = \chi_{\bar{A}A}(X)$$

Or il est bien connu que pour $A, B \in \mathcal{M}_n(\mathbb{C})$

$$\chi_{AB} = \chi_{BA}$$

On obtient donc

$$\overline{\chi_{A\bar{A}}} = \chi_{A\bar{A}}$$

et par conséquent

$$\chi_{A\bar{A}} \in \mathbb{R}\left[X\right]$$

Exercice 68 : [énoncé]

a) Oui, un tel polynôme existe, il suffit de se référer aux matrices compagnons! Pour $a_0, a_1, \ldots, a_{n-1} \in \mathbb{K}$, la matrice compagnon associée est

$$M = \begin{pmatrix} 0 & (0) & -a_0 \\ 1 & \ddots & -a_1 \\ & \ddots & 0 & \vdots \\ (0) & 1 & -a_{n-1} \end{pmatrix}$$

Son polynôme caractéristique est

$$\chi_M(X) = \begin{vmatrix} -X & (0) & -a_0 \\ 1 & \ddots & -a_1 \\ & \ddots & -X & \vdots \\ (0) & 1 & -a_{n-1} - X \end{vmatrix}$$

Il peut se calculer par la succession d'opérations élémentaires

 $L_i \leftarrow L_i + XL_{i+1}$ avec i allant de n-1 à 1 dans cet ordre

On obtient alors

$$\chi_M(X) = \begin{vmatrix} 0 & & (0) & \alpha \\ 1 & \ddots & & \vdots \\ & \ddots & 0 & -(a_{n-2} + a_{n-1}X + X^2) \\ (0) & 1 & -a_{n-1} - X \end{vmatrix}$$

avec

$$\alpha = -(a_0 + a_1 X + \dots + a_{n-1} X^{n-1} + X^n)$$

En développant selon la première ligne, on obtient

$$\chi_M(X) = (-1)^n \left(a_0 + a_1 X + \dots + a_{n-1} X^{n-1} + X^n \right)$$

Ainsi, pour $P \in \mathbb{Z}[X]$ unitaire de degré n, on peut construire une matrice à coefficients entiers dont le polynôme caractéristique est $(-1)^n P(X)$.

b) Il existe une matrice A dont le polynôme caractéristique est P. Puisque toute matrice complexe est trigonalisable, la matrice A est en particulier semblable dans $\mathcal{M}_n(\mathbb{C})$ à une matrice triangulaire de la forme

$$\left(\begin{array}{ccc}
\lambda_1 & & \star \\
& \ddots & \\
0 & & \lambda_n
\end{array}\right)$$

La matrice A^q est alors semblable à la matrice

$$\begin{pmatrix}
\lambda_1^q & & \star' \\
& \ddots & \\
0 & & \lambda_n^q
\end{pmatrix}$$

Le polynôme caractéristique de A^q est alors P_q . Or A^q est une matrice à coefficients entiers et donc son polynôme caractéristique P_q est aussi à coefficients entiers.

c) Compte tenu des relations entre les coefficients et les racines d'un polynôme scindé, on peut majorer les coefficients de P et affirmer que, pour un degré fixé, il n'y a qu'un nombre fini de polynômes P possibles car les coefficients de P sont entiers et borné. Considérons un tel polynôme. L'application $q \in \mathbb{N}^\star \mapsto P_q$ n'est pas injective compte tenu à cause de l'argument de cardinalité précédent. Il existe donc q < r tel que $P_q = P_r$. Ainsi, il existe une permutation σ de \mathbb{N}_n vérifiant :

$$\forall i \in \mathbb{N}_n, \lambda_i^q = \lambda_{\sigma(i)}^r$$

A l'aide d'une décomposition en cycles de σ , on peut affirmer qu'il existe une puissance de σ égale à l'identité et donc conclure que pour tout $i \in \mathbb{N}_n$ il existe q' > q tel que $\lambda_i^q = \lambda_i^{q'}$. On peut alors affirmer que λ_i est nul ou bien racine de l'unité.

Exercice 69 : [énoncé]

Dans une base adaptée au noyau f, la matrice de f est

$$\begin{pmatrix}
a & b & 0 & \cdots & 0 \\
c & d & \vdots & & \vdots \\
\star & \star & \vdots & & \vdots \\
\vdots & \vdots & \vdots & & \vdots \\
\star & \star & 0 & \cdots & 0
\end{pmatrix}$$

On a alors

$$\chi_f(X) = X^{n-2} (X^2 - (a+d)X + ad - bc)$$

Or

$$trf = a + d$$
 et $trf^2 = a^2 + 2bc + d^2$

donc

$$\chi_f(X) = X^{n-2} \left(X^2 - \text{tr}(f)X + \frac{(\text{tr}f)^2 - \text{tr}(f^2)}{2} \right)$$

Exercice 70 : [énoncé]

- a) $\operatorname{Sp} B = \operatorname{Sp}^t B \operatorname{car} \chi_B = \chi_{t_B}.$
- b) Pour tout $X \in \mathcal{M}_{n,1}(\mathbb{K})$, $A(CX) = \lambda(CX)$ donc $CX \in \ker(A \lambda I_n)$.
- c) Soit X et Y des vecteurs propres de A et tB associé à la valeur propre λ . La matrice $C=X^tY$ est solution.
- d) On peut écrire $C = QJ_rP$ avec P,Q inversibles. La relation AC = CB donne $Q^{-1}AQJ_r = J_rPBP^{-1}$.

En écrivant les matrices $Q^{-1}AQ$ et PBP^{-1} par blocs, l'égalité

- $Q^{-1}AQJ_r=J_rPBP^{-1}$ impose une décomposition en blocs triangulaire puis permet d'observer que $\chi_A=\chi_{Q^{-1}AQ}$ et $\chi_B=\chi_{PBP^{-1}}$ ont un facteur commun de degré $\geqslant r$, à savoir le polynôme caractéristique du bloc commun en position (1,1).
- e) La réciproque est assurément fausse en toute généralité. Pour r=n, deux matrices ayant même polynôme caractéristique ne sont pas nécessairement semblables.

Exercice 71 : [énoncé]

On peut écrire $M=QJ_rP$ avec P,Q inversibles. La relation AM=MB donne

$$Q^{-1}AQJ_r = J_r PBP^{-1}$$

En écrivant les matrices $Q^{-1}AQ$ et PBP^{-1} par blocs, l'égalité

$$Q^{-1}AQJ_r = J_rPBP^{-1}$$

impose une décomposition en blocs triangulaire puis permet d'observer que les polynômes $\chi_A = \chi_{Q^{-1}AQ}$ et $\chi_B = \chi_{PBP^{-1}}$ ont un facteur commun de degré $\geqslant r$, à savoir le polynôme caractéristique du bloc commun en position (1,1).

Exercice 72: [énoncé]

En développant selon la première colonne

$$\begin{vmatrix} \lambda & -1 & 0 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & \lambda & -1 \\ -a_0 & \cdots & -a_{n-2} & \lambda - a_{n-1} \end{vmatrix}_{[n]} = -a_0 + \lambda \begin{vmatrix} \lambda & -1 & 0 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & \lambda & -1 \\ -a_1 & \cdots & -a_{n-2} & \lambda - a_{n-1} \end{vmatrix}_{[n-1]}$$

puis en reprenant le processus on parvient à

$$\lambda^n - (a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0)$$

On peut aussi résoudre le problème via l'opération élémentaire : $C_1 \leftarrow C_1 + \lambda C_2 + \cdots + \lambda^{n-1} C_n$.

Exercice 73 : [énoncé]

a) $P_n(x)$ est un déterminant tri-diagonal. On développe selon la première colonne en un déterminant triangulaire et en un second déterminant qu'on développe selon la première ligne.

$$P_1(x) = x \text{ et } P_2(x) = x^2 - 1$$

- b) La suite $(P_n(2\cos\alpha))_{n\geqslant 1}$ est une suite récurrente linéaire d'ordre 2. On introduit l'équation caractéristique associée dont les racines permettent d'exprimer le terme général de $(P_n(x))$ à l'aide de coefficients inconnus déterminés par les valeurs n=1 et n=2. On peut aussi simplement vérifier la relation proposée en raisonnant par récurrence double.
- c) Les $x_k = 2\cos\frac{k\pi}{n+1}$ avec $k \in \{1, ..., n\}$ sont racines distinctes de $P_n(x)$. $A_n \in \mathcal{M}_n(\mathbb{C})$ possède n valeurs propres distinctes donc A est diagonalisable.

Exercice 74 : [énoncé]

a) On obtient

$$P(a_i) = a_i \prod_{j \neq i} (a_i - a_j)$$

P est de degré n et unitaire donc

$$\frac{P(x)}{\prod_{i=1}^{n} (x - a_i)} = 1 + \sum_{i=1}^{n} \frac{a_i}{x - a_i}$$

b) On en déduit

$$\det A = P(0) = (-1)^{n-1}(n-1) \prod_{i=1}^{n} a_i$$

Notons que l'on peut proposer une démarche plus simple en commençant par factoriser les a_i par colonnes.

Exercice 75: [énoncé]

a) En factorisant sur la *i*ème colonne

$$P(a_i) = a_i \begin{vmatrix} a_i & 1 & a_n \\ a_1 & \vdots & \vdots \\ \vdots & 1 & \vdots \\ \vdots & \vdots & a_n \\ a_1 & 1 & a_i \end{vmatrix}$$

En retranchant la ième ligne à chacune des autres

$$P(a_i) = a_i \begin{vmatrix} a_i - a_1 & 0 & 0 \\ 0 & \vdots & \vdots \\ \vdots & 1 & \vdots \\ \vdots & \vdots & 0 \\ 0 & 0 & a_i - a_n \end{vmatrix}$$

et donc

$$P(a_i) = a_i \prod_{j \neq i} (a_i - a_j)$$

b) En utilisant la formule des déterminants

$$P(x) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n \left(a_{\sigma(i),i} + x \delta_{\sigma(i),i} \right)$$

Si $\sigma = \operatorname{Id}_{\mathbb{N}_n}$ alors $\prod_{i=1}^n \left(a_{\sigma(i),i} + x \delta_{\sigma(i),i} \right) = \prod_{i=1}^n \left(a_{i,i} + x \right)$ est une expression polynomiale unitaire de degré n.

Si $\sigma \neq \operatorname{Id}_{\mathbb{N}_n}$ alors $\prod_{i=1}^n \left(a_{\sigma(i),i} + x\delta_{\sigma(i),i}\right) = \prod_{i=1}^n \left(a_{i,i} + x\right)$ est une expression polynomiale de degré strictement inférieure à n.

On peut donc affirmer que P est une fonction polynomiale unitaire de degré exactement n.

c) Puisque les a_i sont deux à deux distincts

$$\frac{P(X)}{\prod_{i=1}^{n} (X - a_i)} = 1 + \sum_{i=1}^{n} \frac{\lambda_i}{X - a_i}$$

avec

$$\lambda_i = \frac{P(a_i)}{\prod\limits_{j \neq i} (a_i - a_j)} = a_i$$

d) On a $\det(A + I_n) = P(1)$.

Si l'un des a_i vaut 1, il suffit de reprendre la valeur de $P(a_i)$. Sinon, par la décomposition précédente

$$\frac{P(1)}{\prod_{i=1}^{n} (1 - a_i)} = 1 + \sum_{i=1}^{n} \frac{a_i}{1 - a_i}$$

et donc

$$\det(A + I_n) = \left(1 + \sum_{i=1}^n \frac{a_i}{1 - a_i}\right) \prod_{i=1}^n (1 - a_i)$$

Exercice 76 : [énoncé]

Il est classique d'établir $\chi_{AB}=\chi_{BA}$ en commençant par établir le résultat pour A inversible et le prolongeant par un argument de continuité et de densité.

Exercice 77 : [énoncé]

Par contraposition, montrons

$$\det A < 0 \Rightarrow \operatorname{Sp}A \cap]-\infty, 0[\neq \emptyset$$

On a

$$\chi_A(X) = X^n + \dots + (-1)^n \det A$$

Si det A < 0 alors $(-1)^n \chi_A(0) < 0$ et $\lim_{t \to -\infty} (-1)^n \chi_A(t) = +\infty$. Sachant la fonction $t \mapsto \chi_A(t)$ continue, il existe $\lambda \in]-\infty, 0[$ racine de χ_A et donc valeur propre de A. On peut aussi établir le résultat en observant que le déterminant de A est le produit des valeurs propres complexes de A comptées avec multiplicité. Parmi celles-ci, celles qui sont réelles sont positives et celles qui sont complexes non réelles, sont deux à deux conjuguées. Le produit est donc positif.

Exercice 78: [énoncé]

On peut écrire

$$\chi_A(X) = \prod_{k=1}^n (X - \lambda_k)$$

avec $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A comptées avec multiplicité. On a alors

$$\chi_A(B) \in \mathrm{GL}_n(\mathbb{C}) \Leftrightarrow \forall 1 \leqslant k \leqslant n, B - \lambda_k I_n \in \mathrm{GL}_n(\mathbb{C})$$

ce qui donne

$$\chi_A(B) \in \mathrm{GL}_n(\mathbb{C}) \Leftrightarrow \forall 1 \leqslant k \leqslant n, \lambda_k \notin \mathrm{Sp}B$$

et on peut ainsi affirmer

$$\chi_A(B) \in \mathrm{GL}_n(\mathbb{C}) \Leftrightarrow \mathrm{Sp}A \cap \mathrm{Sp}B = \emptyset$$

Exercice 79 : [énoncé]

a) On peut écrire $B = P^{-1}CP$ avec P inversible et alors

$$xI_n - B = P^{-1} (xI_n - C) P$$

ainsi que

$$(xI_n - B)^{-1} = P(xI_n - C)^{-1}P^{-1}$$

sous réserve d'inversibilité.

b) La matrice A est trigonalisable dans $\mathcal{M}_n(\mathbb{C})$. Quitte à considérer une matrice semblable, on peut supposer A triangulaire supérieure (ce qui n'affecte ni le calcul de la trace, ni celui du polynôme caractéristique P_A). En écrivant

$$A = \left(\begin{array}{ccc} \lambda_1 & & \star \\ & \ddots & \\ (0) & & \lambda_n \end{array}\right)$$

on obtient

$$(xI_n - A)^{-1} = \begin{pmatrix} \frac{1}{x - \lambda_1} & \star \\ & \ddots & \\ (0) & \frac{1}{x - \lambda_n} \end{pmatrix}$$

et donc

$$\operatorname{tr}(xI_n - A)^{-1} = \sum_{k=1}^n \frac{1}{x - \lambda_k} = \frac{P'_A(x)}{P_A(x)}$$

car

$$P_A(x) = \prod_{k=1}^{n} (x - \lambda_k)$$

Exercice 80 : [énoncé]

- a) Pour tout $f \in \mathcal{L}(E)$, f admet un polynôme minimal qui admet au moins une racine dans \mathbb{C} qui est alors valeur propre de f.
- b) Si λ est valeurs propre de l'endomorphisme considéré alors il existe un polynôme P non nul tel que $XP(X)=(1+\lambda)P(X)$ ce qui est impossible pour des raisons de degré.

Exercice 81 : [énoncé]

- a) Tout endomorphisme sur un C-espace vectoriel de dimension finie admet au moins une valeur propre.
- b) Soit λ une valeur propre de u. $E_{\lambda}(u)$ est un sous-espace vectoriel stable par v (car $u \circ v = v \circ u$) et l'endomorphisme induit par v sur $E_{\lambda}(u)$ admet au moins une valeur propre. Un vecteur propre associé à celle-ci est vecteur propre commun à u et v.

Exercice 82: [énoncé]

On retraduit le problème en terme d'endomorphismes. Soient u et v deux endomorphismes d'un \mathbb{C} -espace vectoriel de dimension finie vérifiant $u \circ v = v \circ u$. Tout endomorphisme sur un \mathbb{C} -espace vectoriel admet au moins une valeur propre. Soit λ une valeur propre de u. $E_{\lambda}(u)$ est un sous-espace vectoriel stable par v (car $u \circ v = v \circ u$) et l'endomorphisme induit par v sur $E_{\lambda}(u)$ admet au moins une valeur propre. Un vecteur propre associé à celle-ci est vecteur propre commun à u et v.

Exercice 83 : [énoncé]

Si A et B ont λ pour valeur propre commune alors puisque A et tA ont les mêmes valeurs propres, il existe des colonnes $X, Y \neq 0$ vérifiant ${}^tAX = \lambda X$ et $BY = \lambda Y$. Posons alors $U = Y^tX \in \mathcal{M}_n(\mathbb{C}) \setminus \{0\}$.

On a $BU = \lambda Y^t X$ et $UA = Y^t({}^t AX) = \lambda Y^t X$ donc UA = BU.

Inversement, supposons qu'il existe $U \in \mathcal{M}_n(\mathbb{C})$ non nulle vérifiant UA = BU. On peut écrire $U = QJ_rP$ avec P,Q inversibles et r = rgU > 0. L'égalité UA = BU entraı̂ne alors $J_rA' = B'J_r$ avec $A' = PAP^{-1}$ et $B' = Q^{-1}BQ$. Puisque semblables, $\operatorname{Sp} A' = \operatorname{Sp} A$ et $\operatorname{Sp} B' = \operatorname{Sp} B$. En raisonnant par blocs, l'égalité $J_rA' = B'J_r$ entraı̂ne

$$A' = \begin{pmatrix} M & 0 \\ \star & \star \end{pmatrix} \text{ et } B' = \begin{pmatrix} M & \star \\ 0 & \star \end{pmatrix} \text{ avec } M \in \mathcal{M}_r(\mathbb{C})$$

Ces formes matricielles $\operatorname{Sp} M \subset \operatorname{Sp} A'$ et $\operatorname{Sp} M \subset \operatorname{Sp} B'$. Or $\operatorname{Sp} M \neq \emptyset$ (cadre complexe) donc $\operatorname{Sp} A \cap \operatorname{Sp} B \neq \emptyset$.

Exercice 84: [énoncé]

- a) Le polynôme caractéristique d'une matrice complexe possède au moins une racine dans $\mathbb C.$
- b) $det(I_n + \lambda T) = 1 \neq 0$ et donc T vérifie (P).
- c) $rgT_r = r$.
- d) Les matrices A et B étant de même rang, elles sont équivalentes et donc il existe P,Q inversibles vérifiant A=PBQ. Puisqu'il existe une matrice M telle que $\det(M+\lambda A)\neq 0$ pour tout $\lambda\in\mathbb{K}$, on a

$$\det(PMQ + \lambda B) = \det P \det(M + \lambda A) \det Q \neq 0$$

et donc B vérifie la propriété (P).

e) Si une matrice est non inversible, elle est de même rang qu'une matrice T_r avec r < n et comme cette dernière vérifie (P), on peut conclure qu'une matrice non inversible vérifie (P).

Inversement, si A est une matrice inversible alors pour tout $M \in \mathcal{M}_n(\mathbb{C})$

$$\det(M + \lambda A) = \det(A) \det(MA^{-1} + \lambda I_n)$$

et puisque la matrice MA^{-1} admet une valeur propre, il est impossible que $\det(M+\lambda A)$ soit non nul pour tout $\lambda\in\mathbb{C}$.

f) Si n est impair alors toute matrice de $\mathcal{M}_n(\mathbb{R})$ admet une valeur propre (car le polynôme caractéristique réel est de degré impair). On peut alors conclure comme au dessus.

Si n est pair, la propriété précédente n'est plus vraie. Par exemple

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

est inversible et vérifie la propriété (P) avec $M = I_n$.

Exercice 85: [énoncé]

Tout endomorphisme sur un \mathbb{C} -espace vectoriel de dimension finie admet au moins une valeur propre.

Soit λ une valeur propre de u. $E_{\lambda}(u)$ est un sous-espace vectoriel stable par v (car $u \circ v = v \circ u$) et l'endomorphisme induit par v sur $E_{\lambda}(u)$ admet au moins une valeur propre. Un vecteur propre associé à celle-ci est vecteur propre commun à u et v.

Exercice 86: [énoncé]

On retraduit le problème en termes d'endomorphismes.

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie vérifiant rg(u) = 1.

Le noyau de u est un hyperplan et si l'on fixe $x \notin \ker u$, on obtient

$$Vect(x) \oplus \ker u = E$$

Puisque $u(x) \in E$, on peut écrire $u(x) = \lambda x + y$ avec $y \in \ker u$ de sorte que

$$u^2(x) = \lambda u(x)$$

Les applications linéaires u^2 et λu sont alors égales sur $\mathrm{Vect}(x)$ mais aussi bien sûr sur $\ker u$, ces applications linéaires sont donc égales sur E.

De plus, pour $y \in \text{Im}(u) \setminus \{0\}$, on peut écrire y = u(a) et alors

$$u(y) = u^2(a) = \lambda u(a) = \lambda y$$

Ainsi λ est bien valeur propre de u.

Exercice 87: [énoncé]

Soient $\lambda \in \operatorname{Sp}(A)$ et $X \neq 0$ tels que $AX = \lambda X$.

Posons $i \in \{1, \dots, n\}$ tel que $|x_i| = \max_{1 \le k \le n} |x_k|$. On a $x_i \ne 0$ et

$$|\lambda x_i| = \left| \sum_{j=1}^n a_{i,j} x_j \right| \le \sum_{j=1}^n |a_{i,j}| |x_i| \le ||A|| |x_i|$$

d'où $|\lambda| \leq ||A||$.

Exercice 88: [énoncé]

- a) Le vecteur $X={}^t(1\dots 1)$ est évidemment vecteur propre associé à la valeur propre 1.
- b) Soient $\lambda \in \operatorname{Sp}(A)$ et $X = {}^t(x_1 \dots x_n)$ un vecteur propre associé. Soit i_0 l'indice vérifiant

$$|x_{i_0}| = \max_{1 \le i \le n} |x_i|$$

On a $|x_{i_0}| \neq 0$ et la relation $AX = \lambda X$ donne $\lambda x_{i_0} = \sum_{j=1}^n a_{i_0,j} x_j$ donc

$$|\lambda| |x_{i_0}| = \left| \sum_{j=1}^n a_{i_0,j} x_j \right| \le \sum_{j=1}^n |a_{i_0,j}| |x_j| \le \sum_{j=1}^n a_{i_0,j} |x_{i_0}| = |x_{i_0}|$$

puis $|\lambda| \leq 1$.

c) Si de plus $|\lambda|=1$ alors il y a égalité dans l'inégalité précédente.

L'égalité dans la deuxième inégalité entraı̂ne $|x_j| = |x_{i_0}|$ pour tout $j \in \{1, \ldots, n\}$ car les coefficients de la matrice A sont tous non nuls.

L'égalité dans la première inégalité entraı̂ne que les complexes engagés sont positivement liés et donc qu'il existe $\theta \in \mathbb{R}$ tel que pour tout $j \in \{1, \dots, n\}$,

$$x_j = |x_j| \,\mathrm{e}^{i\theta}$$

On en déduit $x_1 = \ldots = x_n$ puis $\lambda = 1$.

Exercice 89 : [énoncé]

- a) Le vecteur $X = {}^t(1...1)$ est évidemment vecteur propre associé à la valeur propre 1.
- b) Soient $\lambda \in \operatorname{Sp}(A)$ et $X = {}^t(x_1 \dots x_n)$ un vecteur propre associé. Soit i_0 l'indice vérifiant

$$|x_{i_0}| = \max_{1 \le i \le n} |x_i|$$

On a $|x_{i_0}| \neq 0$ et la relation $AX = \lambda X$ donne $\lambda x_{i_0} = \sum_{j=1}^n a_{i_0,j} x_j$ donc

$$|\lambda| |x_{i_0}| = \left| \sum_{j=1}^n a_{i_0,j} x_j \right| \leqslant \sum_{j=1}^n |a_{i_0,j}| |x_j| \leqslant \sum_{j=1}^n a_{i_0,j} |x_{i_0}| = |x_{i_0}|$$

puis $|\lambda| \leq 1$.

c) Si de plus $|\lambda|=1$ alors il y a égalité dans l'inégalité précédente.

L'égalité dans la deuxième inégalité entraı̂ne $|x_j| = |x_{i_0}|$ pour tout j tel que $a_{i_0,j} \neq 0$.

L'égalité dans la première inégalité entraı̂ne que les complexes engagés sont positivement liés et donc qu'il existe $\theta \in \mathbb{R}$ tel que pour tout $j \in \{1, \dots, n\}$,

$$a_{i_0,j}x_j = a_{i_0,j} |x_j| e^{i\theta}$$

Ces deux propriétés donnent pour tout $j \in \{1, \dots, n\}$, $a_{i_0,j}x_j = a_{i_0,j} |x_{i_0}| e^{i\theta}$ que $a_{i_0,j} \neq 0$ ou non.

En injectant ceci dans la relation $\lambda x_{i_0} = \sum_{j=1}^n a_{i_0,j} x_j$, on obtient $\lambda x_{i_0} = |x_{i_0}| e^{i\theta}$.

Pour $j \in \{1, ..., n\}$ tel que $a_{i_0, j} \neq 0, x_j = \lambda x_{i_0}$.

Posons $i_1=j$ et reprenons la même démarche, ce qui est possible puisque $|x_{i_1}|=\max_{1\leqslant i\leqslant n}|x_i|$.

On définit ainsi une suite $(i_p) \in \{1, \ldots, n\}^{\mathbb{N}}$ vérifiant $\lambda x_{i_p} = x_{i_{p+1}}$. Cette suite étant non injective, il existe $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$ tel que $i_p = i_{p+q}$ ce qui donne $\lambda^q = 1$.

Exercice 90 : [énoncé]

a)

$$L = \begin{pmatrix} 1 & (0) \\ \vdots & \ddots & \\ 1 & \cdots & 1 \end{pmatrix} \text{ et } U = \begin{pmatrix} 1 & \cdots & 1 \\ & \ddots & \vdots \\ (0) & & 1 \end{pmatrix} = {}^{t}L$$

b) $U = I + N + \dots + N^{n-1}$, (I - N)U = I donc $U^{-1} = I - N$, $L^{-1} = {}^t(U^{-1}) = I - {}^tN$ donc $A^{-1} = U^{-1}L^{-1} = I - N - {}^tN + N^tN$. c)

$$A^{-1} = \begin{pmatrix} 2 & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & 2 & 1 \\ (0) & & 1 & 1 \end{pmatrix}$$

Posons χ_n le polynôme caractéristique de $A^{-1} \in M_n(\mathbb{R})$.

On a $\chi_{n+2}(\lambda) = (2-\lambda)\chi_{n+1}(\lambda) - \chi_n(\lambda)$ avec $\chi_0(\lambda) = 1$ et $\chi_1(\lambda) = 1 - \lambda$. En écrivant $\lambda = 2 + 2\cos\theta$ avec $\theta \in [0, \pi]$ et en posant $f_n(\theta) = \chi_n(2 + 2\cos\theta)$ on a la relation.

 $f_{n+2}(\theta) + 2\cos\theta f_{n+1}(\theta) + f_n(\theta) = 0$, $f_0(\theta) = 1$ et $f_1(\theta) = 2\cos\theta - 1$. La résolution de cette récurrence linéaire d'ordre 2 donne

$$f_n(\theta) = \frac{\cos\left(n + \frac{1}{2}\right)\theta}{\cos\frac{\theta}{2}}$$

Ainsi, χ_n admet n racines dans [0,4] et puisque ce polynôme est de degré n il n'y en a pas ailleurs : $\operatorname{Sp} A^{-1} \subset [0,4]$.

Exercice 91: [énoncé]

1ère méthode :

Notons $\chi_n(\lambda)$ le polynôme caractéristique de cette matrice de taille n. Par développement du déterminant selon la dernière colonne on obtient

$$\chi_n(\lambda) = (\lambda - 1)\chi_{n-1}(\lambda) - (\lambda - 1)^{n-2}$$

En étudiant les premiers termes de cette suite, on conjecture

$$\chi_n(\lambda) = (\lambda - 1)^n - (n - 1)(\lambda - 1)^{n-2}$$

ce que l'on vérifie aisément par récurrence.

Les valeurs propres de la matrice sont donc 1 (pour $n \ge 3$) et les deux racines $\lambda = 1 \pm \sqrt{n-1}$.

2ème méthode:

Notons A la matrice étudiée. L'équation $AX = \lambda X$ donne le système

$$\begin{cases} x_1 + \dots + x_n = \lambda x_1 \\ x_1 + x_2 = \lambda x_2 \\ \vdots \\ x_1 + x_n = \lambda x_n \end{cases}$$

qui équivaut à

$$\begin{cases} x_1 + \dots + x_n = \lambda x_1 \\ x_1 = (\lambda - 1)x_2 \\ \vdots \\ x_1 = (\lambda - 1)x_n \end{cases}$$

Pour $\lambda=1,$ on peut obtenir une solution non nulle avec les conditions

$$x_1 = 0 \text{ et } x_2 + \dots + x_n = 0$$

Pour $\lambda \neq 1$, le système devient

$$\begin{cases} (n-1)x_1 = (\lambda - 1)^2 x_1 \\ x_2 = x_1/(\lambda - 1) \\ \vdots \\ x_n = x_1/(\lambda - 1) \end{cases}$$

Pour $x_1 = 0$, la solution du système est nulle.

Pour $x_1 \neq 0$, on peut former une solution non nulle à condition que $(\lambda - 1)^2 = n - 1$ ce qui fournit les valeurs déjà remarquées au dessus.

Exercice 92 : [énoncé]

Notons M la matrice étudiée et supposons $n \geqslant 3$, les cas n=1 et 2 étant immédiats.

Puisque $\operatorname{rg} M = 2$, 0 est valeur propre de $\mathcal{M}_n(\mathbb{R})$ et $\dim E_0(M) = n - 2$. Soit λ une valeur propre non nulle de $\mathcal{M}_n(\mathbb{R})$ et $X = {}^t(x_1 \cdots x_n)$ un vecteur propre associé.

L'équation $MX = \lambda X$ fournit le système

$$\begin{cases} x_n = \lambda x_1 \\ \vdots \\ x_n = \lambda x_{n-1} \\ x_1 + \dots + x_n = \lambda x_n \end{cases}$$

On en déduit

$$\lambda(\lambda - 1)x_n = \lambda x_1 + \dots + \lambda x_{n-1} = (n-1)x_n$$

avec $x_n \neq 0$ car $x_n = 0$ et $\lambda \neq 0$ entraînent X = 0. Par suite λ est racine de l'équation $\lambda^2 - \lambda - (n-1) = 0$ et donc

$$\lambda = \frac{1 \pm \sqrt{4n - 3}}{2}$$

Inversement, on justifie que ses valeurs sont valeurs propres, soit en remontant le raisonnement, soit en exploitant la diagonalisabilité de la matrice symétrique réelle M pour affirmer l'existence de n valeurs propres comptées avec multiplicité.

Exercice 93: [énoncé]

Notons $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A comptées avec multiplicité. Si la matrice A est inversible alors

$$^{t}(\operatorname{com} A) = \det(A)A^{-1}$$

Les valeurs propres de A^{-1} sont alors

$$\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}$$

Les valeurs propres de com A, qui sont aussi celles de $^t(com A)$, sont alors les

$$\frac{\det A}{\lambda_1}, \dots, \frac{\det A}{\lambda_n}$$

Si $\operatorname{rg} A \leq n-2$ alors tous les mineurs de A sont nuls et donc $\operatorname{com} A = O_n$ et l'on peut immédiatement conclure.

Si $\operatorname{rg} A = n-1$ alors la comatrice de A est de rang inférieur à 1. En effet on a

$$^{t}(\text{com}A)A = O_{n}$$

donc

$$\operatorname{Im} A \subset \ker(^t \operatorname{com} A)$$

puis

$$\dim \ker(\operatorname{com} A) = \dim \ker({}^{t}\operatorname{com} A) \geqslant n - 1$$

et par la formule du rang

$$rg(com A) \leq 1$$

Sachant que la comatrice de A est de rang 0 ou 1, 0 est valeur propre de comA de multiplicité au moins égale à n-1. Puisque la trace de com $A \in \mathcal{M}_n(\mathbb{C})$ est égale à la somme de ses valeurs propres comptées avec multiplicité, la dernière valeur propre de comA n'est autre

Pour calculer cette dernière, considérons $A_t = A + tI_n$ avec t > 0. Puisque A n'est pas inversible, 0 est valeur propre de A et on peut indexer les valeurs propres $\lambda_1, \ldots, \lambda_n$ de A de sorte que $\lambda_n = 0$.

Pour t assez petit, la matrice A_t est inversible de valeurs propres

$$\lambda_1 + t, \dots, \lambda_{n-1} + t, t$$

Les valeurs propres de la comatrice de A_t sont alors

$$\frac{\det A_t}{\lambda_1 + t}, \dots, \frac{\det A_t}{\lambda_{n-1} + t}, \frac{\det A_t}{t}$$

avec

$$\det A_t = (\lambda_1 + t) \dots (\lambda_{n-1} + t)t$$

On en déduit

$$\operatorname{tr}(\operatorname{com} A_t) = ((\lambda_2 + t) \dots (\lambda_{n-1} + t)t) + \dots + ((\lambda_1 + t) \dots (\lambda_{n-2} + t)t) + (\lambda_1 + t) \dots (\lambda_{n-1} + t)t$$

et enfin

$$\operatorname{tr}(\operatorname{com} A) = \lim_{t \to 0^+} \operatorname{tr}(\operatorname{com} A_t) = \lambda_1 \dots \lambda_{n-1}$$

Si $\operatorname{rg} A = n-1$ alors 0 est valeur propre de multiplicité n-1 de $\operatorname{com} A$ et l'autre valeur propre de $\operatorname{com} A$ est le produit des valeurs propres non nulles de A. Si $\operatorname{rg} A \leqslant n-2$ alors 0 est valeur propre au moins double de A et donc $\operatorname{tr}(\operatorname{com} A) = 0$. Dans ce cas, 0 est valeur propre de multiplicité n de $\operatorname{com} A$. En fait, on peut montrer que la comatrice de A est nulle puisque tous les mineurs de A sont nuls quand $\operatorname{rg} A \leqslant n-2$.

Exercice 94: [énoncé]

a) Par le calcul

$$A^{2} = \begin{pmatrix} 1 & (0) & 0 \\ \vdots & & 1 \\ 1 & & \vdots \\ 0 & (0) & 1 \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{R})$$

Puisque A et A^2 ne possèdent que deux colonnes non nulles et que celles-ci sont visiblement indépendantes, on a $rgA = rgA^2 = 2$.

b) On a $\operatorname{rg} f = \operatorname{rg} f^2$ donc dim $\ker f = \dim \ker f^2$. Or $\ker f \subset \ker f^2$ donc $\ker f = \ker f^2$.

Pour $x \in \ker f \cap \operatorname{Im} f$, on peut écrire x = f(a) et on a f(x) = 0 donc $a \in \ker f^2 = \ker f$ puis x = 0.

On en déduit $\ker f \cap \operatorname{Im} f = \{0_E\}$ et un argument de dimension permet d'affirmer $\ker f \oplus \operatorname{Im} f = \mathbb{R}^n$.

c) Une base adaptée à la décomposition $\ker f \oplus \operatorname{Im} f = \mathbb{R}^n$ permet de justifier que la matrice A est semblable à

$$\begin{pmatrix}
0 & & & & (0) \\
& \ddots & & \\
& & 0 & \\
(0) & & B
\end{pmatrix} \text{ avec } B \in \mathcal{M}_2(\mathbb{R})$$

Puisqu'on a alors rgA = rgB = 2, on peut affirmer que la matrice B est inversible. d) trB = trA = 0 et $trB^2 = trA^2 = 2$.

Soient λ et μ les deux valeurs propres complexes de la matrice B. On a

$$\begin{cases} \lambda + \mu = 0 \\ \lambda^2 + \mu^2 = 2 \end{cases}$$

On en déduit

$$\{\lambda, \mu\} = \{1, -1\}$$

Ainsi

$$SpB = \{1, -1\} \text{ et } SpA = \{1, 0, -1\}$$

e) Par calcul de rang

$$\dim E_0(A) = \dim \ker A = n - 2$$

On a aussi

$$\dim E_1(A) = \dim E_1(B) = 1$$
 et $\dim E_{-1}(A) = 1$

donc la matrice A est diagonalisable car la somme des dimensions de ses sous-espaces propres est égale à n.

Exercice 95 : [énoncé]

Introduisons la colonne $X_n={}^t$ (u_n u_{n+1} \cdots u_{n+p-1}). On vérifie $X_{n+1}=AX_n$ avec

$$A = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ (0) & & 0 & 1 \\ a_0 & a_1 & \cdots & a_{p-1} \end{pmatrix}$$

Pour déterminer la limite de (u_n) , on va chercher une constance le long de la dynamique. Il parait naturel de la considérer linéaire et fonction p termes consécutifs de la suite. Nous cherchons donc une ligne $L \in \mathcal{M}_{p,1}(\mathbb{C})$ telle que $LX_{n+1} = LX_n$. Il suffit pour cela de déterminer L vérifiant L = LA et donc de trouver tL vecteur propre de tA associé à la valeur propre 1. Après calcul, on obtient

$$L = (a_0 \ a_0 + a_1 \ \cdots \ a_0 + \cdots + a_{p-1})$$

sachant $P(1) = 1 - (a_0 + \dots + a_{p-1}) = 0$.

En posant ℓ la limite de la suite $(u_n)_{n\in\mathbb{N}}$, la relation $LX_n=LX_0$ donne à la limite

$$\left(\sum_{k=0}^{p-1} (p-k)a_k\right) \ell = \sum_{k=0}^{p-1} a_k \sum_{j=0}^k u_j$$

Puisque 1 est racine simple de P,

$$P'(1) = p - \sum_{k=0}^{p-1} k a_k = \sum_{k=0}^{p-1} (p-k)a_k \neq 0$$

et donc

$$\ell = \frac{\sum_{k=0}^{p-1} a_k \sum_{j=0}^{k} u_j}{P'(1)}$$

Exercice 96: [énoncé]

Les coefficients de tcom(A). A s'interprètent comme des développements de déterminants selon une colonne...

Si A admet n valeurs propres distinctes, det A est le produit de ces valeurs propres.

Si $X \neq 0$ vérifie $AX = \lambda X$ alors $\lambda^t \text{com}(A)X = (\det A)X$.

Ainsi quand $\lambda \neq 0$, X est vecteur propre de ${}^t \text{com}(A)$ associé à la valeur propre $\frac{\det A}{\lambda}$.

Si A n'est pas inversible alors det A = 0donc ${}^t com(A)A = 0$ puis $Im A \subset \ker^t com A$.

Ainsi dim ker t com $(A) \ge n-1$. De plus com $A \ne 0$ car rgA = n-1 (car les valeurs propres de A sont simples, en particulier 0). Par suite dim ker t com(A) = n-1 Sous réserve que $n \ge 2$, 0 est valeur propre de t comA et puisque dim ker t comA = n-1 il ne reste de place que pour une seule autre valeur.

dim ker t com(A) = n - 1, il ne reste de place que pour une seule autre valeur propre.

Soit $X \in \ker A \setminus \{0\}$,. On a ${}^t \operatorname{com}(A + tI_n)(A + tI_n)X = \det(A + tI_n)X$ Pour $t \neq 0$, on a ${}^t \operatorname{com}(A + tI_n)X = \frac{\det(A + tI_n)}{t}X$.

Quand $t \to 0^+$, par continuité $t \operatorname{com}(A + tI_n)X \to t \operatorname{com}(A)X$.

En calculant le déterminant par diagonalisation, $\frac{\det(A+tI_n)}{t} \to \mu$ avec μ le produit des valeurs propres non nulles de A.

Par unicité de la limite, on obtient ${}^{t}com(A)X = \mu X$.

Au final, t comA admet 2 valeurs propres : 0 et μ .

Exercice 97: [énoncé]

a) $u_n = \chi_n(2\cos\alpha)$ est un déterminant tridiagonal.

On développe selon la première colonne en un déterminant triangulaire et en un second déterminant qu'on développe selon la première ligne.

On obtient

$$u_n = 2\cos(\alpha)u_{n-1} - u_{n-2}$$

La suite (u_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique

$$r^2 - 2\cos(\alpha)r + 1 = 0$$

de racines $e^{\pm i\alpha}$.

Les conditions initiales donnent alors

$$u_n = \frac{\sin(n+1)\alpha}{\sin\alpha}$$

b) Les $\lambda_k = 2\cos\left(\frac{k\pi}{n+1}\right)$ avec $k \in \{1, \dots, n\}$ sont racines distinctes de $P_n(x)$.

 $A_n \in \mathcal{M}_n(\mathbb{C})$ possède n valeurs propres distinctes donc A est diagonalisable et ses sous-espaces propres sont de dimension 1.

c) Posons

$$\lambda = 2\cos(k\pi/(n+1))$$

Soit $X \in \mathcal{M}_{n,1}(\mathbb{C})$ vérifiant $AX = \lambda X$. On a

$$\forall j \in \{1, \dots, n\}, x_{j-1} - \lambda x_j + x_{j+1} = 0$$

La suite $(x_j)_{0 \le j \le n+1}$ est alors une suite récurrente linéaire double d'équation caractéristique

$$r^2 - 2\cos\left(\frac{k\pi}{n+1}\right)r + 1 = 0$$

On en déduit

$$x_j = \lambda \cos \left[\frac{k\pi}{n+1} j \right] + \mu \sin \left[\frac{k\pi}{n+1} j \right]$$

Les conditions $x_0 = x_{n+1} = 0$ donnent $\lambda = 0$ et finalement

$$x_j = \mu \sin\left[\frac{k\pi}{n+1}j\right]$$

Exercice 98 : [énoncé]

Si λ est valeur propre de A alors il existe une colonne non nulle telle que $AX = \lambda X$. Pour M matrice dont toutes les colonnes sont égales à X on a $u(M) = \lambda M$. Ainsi λ est valeur propre de u. Inversement si λ est valeur propre de u, une colonne non nulle d'un vecteur propre associé à λ définit un vecteur propre associée à la valeur propre λ pour A. Ainsi λ est aussi valeur propre de A. Finalement $\operatorname{Sp}(A) = \operatorname{Sp}(u)$.

Une matrice M appartient au sous-espace propre associé à la valeur propre λ de u si, et seulement si, chaque colonne de M appartient au sous-espace propre associé à la valeur propre λ de A.

Exercice 99 : [énoncé]

a) Si λ est valeur propre de A de colonne propre $X \neq 0$ alors pour $M \in \mathcal{M}_n(\mathbb{C})$ dont toutes les colonnes sont égales à X, on a $AM = \lambda M$ avec $M \neq 0$. Ainsi λ est aussi valeur propre de Φ_A .

Inversement, si λ est valeur propre de Φ_A d'élément propre $M \neq 0$ alors pour X colonne non nul de M, on a $AX = \lambda X$ donc λ valeur propre de A.

b) On remarque $MA = {}^t({}^tA^tM)$. Un raisonnement semblable au précédent permet d'établir que les valeurs propres de Ψ_A sont les valeurs propres de tA i.e. celles de A.

Exercice 100 : [énoncé]

a)

$$AM - MA = \left(\begin{array}{cc} a & b \\ 2c & 2d \end{array}\right) - \left(\begin{array}{cc} a & 2b \\ c & 2d \end{array}\right) = \left(\begin{array}{cc} 0 & -b \\ c & 0 \end{array}\right)$$

b) 0 est valeur propre avec $E_0 = \text{Vect}(E_{1,1}, E_{2,2})$, 1 est valeur propre avec $E_1 = \text{Vect}(E_{2,1})$ et -1 est valeur propre avec $E_{-1} = \text{Vect}(E_{1,2})$.

Exercice 101: [énoncé]

Si A est diagonalisable alors il existe une matrice P inversible telle que $P^{-1}AP = D$ diagonale. En transposant, ${}^tP^tA^t(P^{-1}) = D$ c'est-à-dire $Q^tAQ^{-1} = D$ avec $Q = {}^tP$ inversible d'inverse $Q^{-1} = {}^t(P^{-1})$.

Exercice 102: [énoncé]

Il existe des matrices $P \in GL_n(\mathbb{K})$ et $D \in D_n(\mathbb{K})$ telles que

$$AB = PDP^{-1}$$

On a alors

$$A(BA)A^{-1} = PDP^{-1}$$

puis

$$BA = (A^{-1}P)D(P^{-1}A) = (A^{-1}P)D(A^{-1}P)^{-1}$$

Exercice 103: [énoncé]

a) $\chi_A(X) = (X - \cos \alpha)^2 + \sin^2 \alpha$ de racines $e^{i\alpha}$ et $e^{-i\alpha}$.

Si $\alpha \neq 0 \quad [\pi]$ alors A possède deux valeurs propres distinctes donc A est diagonalisable.

Si $\alpha = 0$ [π] alors A est diagonale.

b) Si $\alpha \neq 0 \quad [\pi]$ alors A ne possède pas de valeurs propres (réelles) donc n'est pas diagonalisable.

Si $\alpha = 0$ [π] alors A est diagonale.

c) $\chi_B(X) = (X - \cos \alpha)(X + \cos \alpha) - \sin^2 \alpha$ de racines ±1 donc B est diagonalisable.

Exercice 104: [énoncé]

On obtient

$$\chi_M = X(X^2 + (ab + bc + ca))$$

Posons $\delta = ab + bc + ca$.

Si $\delta < 0$ alors M est diagonalisable car χ_M admet trois racines distinctes et donc M admet trois valeurs propres distinctes.

Si $\delta=0$ alors M est diagonalisable si, et seulement si M est semblable à la matrice nulle ce qui n'est le cas que si a=b=c=0.

Si $\delta > 0$ alors M n'est pas diagonalisable car χ_M n'est pas scindé sur $\mathbb{R}[X]$.

Exercice 105 : [énoncé]

a) A ne possède que deux colonnes différentes donc $rgA \leq 2$.

$$\left| \begin{array}{cc} a & b \\ b & a \end{array} \right| = a^2 - b^2 \neq 0$$

donc rg(A) = 2. Par le théorème du rang dim ker A = 2n - 2 donc 0 est valeur propre de A et la dimension du sous-espace propre associé est 2n - 2.

b) Les vecteurs $t (1 \dots 1)$ et $t (1 -1 \dots 1 -1)$ sont vecteurs propres associées aux valeurs propres non nulles n(a+b) et n(a-b). La somme des dimensions des sous-espaces propres vaut 2n donc A est diagonalisable.

Exercice 106: [énoncé]

La matrice A est la matrice dans la base canonique $(1, X, \dots, X^n)$ de l'endomorphisme

$$u: P \in \mathbb{C}_n[X] \mapsto nXP + (1 - X^2)P'$$

Considérons alors la base de polynômes étagés $(1,(X+1),\ldots,(X+1)^n)$. On a

$$u((X+1)^k) = nX(X+1)^k + k(1-X)(X+1)^k$$

qui se réécrit

$$u((X+1)^k) = (n-k)(X+1)^{k+1} + (2k-n)(X+1)^k$$

La matrice de l'endomorphisme u dans la base $(1, (X+1), \dots, (X+1)^n)$ est triangulaire inférieure de coefficients diagonaux distincts

$$2k - n$$
 avec $k \in \{0, \dots, n\}$

On en déduit χ_A et on observer que A possède n+1 valeurs propres distinctes. La matrice A est donc diagonalisable.

Exercice 107 : [énoncé]

a) En développant selon la première colonne

$$\begin{vmatrix} \lambda & -1 & 0 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & \lambda & -1 \\ -a_0 & \cdots & -a_{n-2} & \lambda - a_{n-1} \end{vmatrix}_{[n]} = -a_0 + \lambda \begin{vmatrix} \lambda & -1 & 0 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & \lambda & -1 \\ -a_1 & \cdots & -a_{n-2} & \lambda - a_{n-1} \end{vmatrix}_{[n-1]}$$

puis en reprenant le processus on parvient à

$$\lambda^n - (a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0)$$

On peut aussi retrouver ce résultat via l'opération élémentaire : $C_1 \leftarrow C_1 + \lambda C_2 + \cdots + \lambda^{n-1} C_n$.

On en déduit

$$\chi_M(X) = P(X)$$

b) Si λ est racine du polynôme P alors λ est valeur propre de M. Après résolution, le sous-espace propre associé est engendré par la colonne

$$^{t}\left(1 \quad \lambda \quad \dots \quad \lambda^{n-1}\right)$$

c) Puisque les sous-espaces propres sont de dimension 1, la matrice M est diagonalisable si, et seulement si, elle possède exactement n valeur propres ce qui revient à dire que le polynôme P est scindé à racines simple.

Exercice 108: [énoncé]

- 1. La matrice A est symétrique réelle donc orthogonalement diagonalisable. 2.a) $\operatorname{rg} A = 2$.
- 2.b) Le polynôme caractéristique de A est scindé et unitaire. Puisque dim ker $A=2,\,0$ est valeur propre au moins double de A et donc

$$\chi_A = X^2(X - u_1)(X - u_2)$$

avec $u_1, u_2 \in \mathbb{C}$.

La matrice A est trigonalisable semblable à une matrice triangulaire où figurent sur la diagonale les valeurs $0, 0, u_1$ et u_2 . Par similitude, on a

$$trA = u_1 + u_2$$
 et $trA^2 = u_1^2 + u_2^2$

et donc

$$u_1 + u_2 = k$$
 et $u_1^2 + u_2^2 = k^2 + 6$

Enfin $u_1 \neq 0$ car sinon $u_2 = k$ et $u_2^2 = k^2 \neq k^2 + 6$. De même $u_2 \neq 0$. 2.c) Si $u_1 = u_2$ alors $u_1 = u_2 = k/2$ et $k^2/2 = k^2 + 6$ donc $k = \pm i2\sqrt{3}$. La résolution du système

$$AX = \frac{k}{2}X$$

conduit à un espace de solution de dimension 1

$$Vect^{t}(1, k/2, 1, 1)$$

2.d) Finalement, la matrice A est diagonalisable dans $\mathcal{M}_4(\mathbb{C})$ si, et seulement si, $k \neq \pm i2\sqrt{3}$.

Exercice 109: [énoncé]

En ajoutant la troisième colonne à la première puis en retranchant la première ligne à la troisième

$$\chi_A(\lambda) = (-1)^3 \begin{vmatrix}
-\lambda - 2 & 5 + x & x \\
0 & -2 - x - \lambda & -x \\
0 & -x & 3 - x - \lambda
\end{vmatrix}$$

ce qui donne

$$\chi_A(\lambda) = (\lambda + 2) \left(\lambda^2 + (2x - 1)\lambda - x - 6\right)$$

Le facteur a pour discriminant

$$\Delta = (2x-1)^2 + 4x + 24 = 4x^2 + 25 > 0$$

et possède donc deux racines réelles distinctes. Si celles-ci diffèrent de -2, alors la matrice A possède trois valeurs propres distinctes et est donc diagonalisable. Il est donc nécessaire que -2 soit racine de $\lambda^2 + (2x-1)\lambda - x - 6$ pour que la matrice A ne soit pas diagonalisable. C'est le cas si, et seulement si, x = 0 et alors

$$A = \left(\begin{array}{rrr} -2 & 5 & 1\\ 0 & -2 & 0\\ -5 & 5 & 3 \end{array}\right)$$

On a alors

$$rg(A+2I_3)=2$$

et donc dim $E_{-2}(A) = 1 < m_{-2}(A)$ ce qui entraı̂ne que la matrice A n'est pas diagonalisable.

Finalement A n'est pas diagonalisable si, et seulement si, x=0.

Exercice 110 : [énoncé]

a) On obtient

$$A^t A = (a^2 + b^2 + c^2 + d^2)I_4$$

et donc $(\det A)^2 = (a^2 + b^2 + c^2 + d^2)^4$.

D'autre part, pour b,c,d fixés, $a\mapsto \det A$ est une fonction polynomiale unitaire de degré 4 donc

$$\det A = a^4 + \alpha(b, c, d)a^3 + \beta(b, c, d)a^2 + \gamma(b, c, d)a + \delta(b, c, d)$$

La valeur connue de $(\det A)^2$ permet alors de déterminer $\alpha, \beta, \gamma, \delta$ et d'affirmer

$$\det(A) = (a^2 + b^2 + c^2 + d^2)^2$$

Si $a^2 + b^2 + c^2 + d^2 \neq 0$ alors rg(A) = 4. Si $a^2 + b^2 + c^2 + d^2 = 0$ alors $rg(A) \leq 3$. Or $a^2 + b^2 \neq 0$ donc la sous matrice

 $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ est de rang 2 et donc $rg(A) \geqslant 2$.

On observe de plus que

$$C_3 = \frac{ac + bd}{a^2 + b^2}C_1 + \frac{bc - ad}{a^2 + b^2}C_2$$

 $_{
m et}$

$$C_4 = \frac{ad - bc}{a^2 + b^2}C_1 + \frac{bd + ac}{a^2 + b^2}C_2$$

donc rg(A) = 2.

b) Par la formule obtenue ci-dessus, $\chi_A = ((a-X)^2 + b^2 + c^2 + d^2)$ et donc $\chi_A = ((a-X)^2 + \alpha^2)^2$.

Les valeurs propres de A sont $a + \alpha$ et $a - \alpha$.

Par l'étude qui précède $\operatorname{rg}(A-(a+\alpha)\operatorname{Id})=2$ et $\operatorname{rg}(A-(a-\alpha)\operatorname{Id})=2$ donc

$$\dim E_{a+\alpha}(A) = \dim E_{a-\alpha}(A) = 2$$

et par suite A est diagonalisable.

Exercice 111 : [énoncé]

- a) rg(A) = 0 si $a_1 = ... = a_{n-1} = 0$ et rg(A) = 2 sinon.
- b) La somme des valeurs propres est nulle.
- c) En développant le déterminant selon la dernière colonne puis en développant les mineurs obtenus selon leur k-ieme colonne, on obtient

$$\chi_A = X^{n-2}(X^2 - (a_1^2 + \dots + a_{n-1}^2))$$

Si $a_1^2 + \cdots + a_{n-1}^2 \neq 0$ alors A admet deux valeurs propres opposées non nulles et 0 pour valeur propre d'espace propre de dimension n-2 donc A est diagonalisable. Si $a_1^2 + \cdots + a_{n-1}^2 = 0$ alors 0 est la seule valeur propre de A et A est diagonalisable si, et seulement si, A = 0 i.e. $a_1 = \ldots = a_{n-1} = 0$.

Exercice 112 : [énoncé]

a) On écrit $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ et alors

$$BX = \lambda X \Leftrightarrow X_2 = \lambda X_1 \operatorname{et} AX_1 = \lambda X_2 \Leftrightarrow X_2 = \lambda X_1 \operatorname{et} AX_1 = \lambda^2 X_1$$

Par conséquent λ est valeur propre de B si, et seulement si, λ^2 est valeur propre de A.

b) Si $A = O_n$ alors A est diagonalisable mais pas B. En effet, 0 est la seule valeur propre de B alors que $B \neq O_n$.

Exercice 113: [énoncé]

Soient F_1 et F_2 des sous-espaces vectoriels supplémentaires de dimension p et q d'un \mathbb{K} -espace vectoriel E. Soit $\mathcal{B}=(\mathcal{B}_1,\mathcal{B}_2)$ une base adaptée à la supplémentarité de F_1 et F_2 et f_1 , f_2 et f_1 les endomorphismes de f_1 , f_2 et f_2 déterminés par $\mathrm{Mat}(f_1,\mathcal{B}_1)=A_1$, $\mathrm{Mat}(f_2,\mathcal{B}_2)=A_2$ et $\mathrm{Mat}(f,\mathcal{B})=A$. Il est clair que pour tout $\lambda \in \mathbb{K}$, on a $E_{\lambda}(f)=E_{\lambda}(f_1)\oplus E_{\lambda}(f_2)$. En caractérisant la diagonalisabilité par la somme des dimensions des sous-espaces propres, on conclut à l'équivalence voulue.

Exercice 114: [énoncé]

Via un changement de bases réalisé de sorte que les premiers vecteurs soient dans le noyau de A, on peut écrire

$$P^{-1}AP = \left(\begin{array}{cc} O_{n-1} & \star \\ 0 & \lambda \end{array}\right)$$

avec $\lambda = \operatorname{tr} A$.

Si $\lambda \neq 0$ alors λ est valeur propre de A ce qui permet de diagonaliser A. Si A est diagonalisable, sachant que A n'est pas nulle, $\lambda \neq 0$.

Exercice 115 : [énoncé]

Posons $M = X^t Y$. On a $M^2 = X(^t Y X)^t Y$. Or $\alpha = ^t Y X$ est un scalaire donc $M^2 = \alpha X^t Y = \alpha M$.

Si $\alpha \neq 0$ alors M annule le polynôme scindé simple $X(X-\alpha)$ et donc M est diagonalisable.

Si $\alpha = 0$ alors M annule le polynôme X^2 et donc 0 est la seule valeur propre possible. Si M est diagonalisable alors M est semblable à la matrice nulle et donc $M = O_n$. Ceci est exclu car on suppose les colonnes X et Y non nulles.

Au final M est diagonalisable si, et seulement si, $\alpha \neq 0$.

Notons que $\alpha = \operatorname{tr}({}^t YX) = \operatorname{tr}(X^t Y) = \operatorname{tr} M$ et que M est une matrice de rang 1. On peut montrer qu'une matrice de rang 1 est diagonalisable si, et seulement si, sa trace est non nulle.

Exercice 116: [énoncé]

Notons $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{K}^n et f l'endomorphisme de \mathbb{K}^n dont la matrice dans \mathcal{B} est J.

Posons $\varepsilon_1 = e_1 + \cdots + e_n$, de sorte que $f(\varepsilon_1) = n\varepsilon_1$.

Puisque $\operatorname{rg} f = \operatorname{rg} J = 1$, on peut introduire $(\varepsilon_2, \dots, \varepsilon_n)$ base du noyau de f. Il est alors clair que $\mathcal{B}' = (\varepsilon_1, \dots, \varepsilon_n)$ est une base de \mathbb{K}^n et que la matrice de f dans celle-ci est diagonale.

On peut aussi observer $J^2 = nJ$ et exploiter que X(X - n) est un polynôme annulateur scindé simple de J.

Exercice 117: [énoncé]

En posant $M = (a_i a_j)_{1 \le i,j \le n}$, on vérifie $M^2 = \lambda M$ avec $\lambda = \sum_{k=1}^n a_k^2$.

Si $\lambda \neq 0$ alors M annule un polynôme scindé simple, elle est donc diagonalisable. Si $\lambda = 0$ alors $M^2 = 0$ et donc M est diagonalisable si, et seulement si, M = 0 ce qui revient à $(a_1, \ldots, a_n) = 0$.

Notons que la matrice M est symétrique mais pas nécessairement réelle : le théorème spectral ne s'applique pas.

Exercice 118: [énoncé]

 $E_{i,i}$ est diagonale donc diagonalisable.

Pour $i \neq j$, $\chi_{E_{i,j}}(X) = (-1)^n X^n$ donc seul 0 est valeur propre. Par suite si $E_{i,j}$ est diagonalisable alors $E_{i,j} = 0$ ce qui est incorrect. Conclusion $E_{i,j}$ diagonalisable si, et seulement si, i = j.

Exercice 119 : [énoncé]

On obtient $N^2 = sN$ avec $s = a_1 + \cdots + a_n$.

Puisque s > 0, N annule un polynôme scindé simple et donc est diagonalisable. -1/2 n'est pas valeur propre de N car n'est pas racine du polynôme annulateur $X^2 - sX$ donc M est inversible. En recherchant M^{-1} de la forme $xM + yI_n$, on obtient

$$M^{-1} = I_n - (2+s)N$$

Exercice 120: [énoncé]

a) $M(a,b) = PD(a,b)P^{-1}$ avec $D(a,b) = \text{diag}((a+b)^2, (a-b)^2, a^2 - b^2, a^2 - b^2)$ et

$$P = \left(\begin{array}{cccc} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \\ 1 & 1 & -1 & 0 \end{array}\right)$$

b) $M(a,b)^n \to 0$ si, et seulement si, |a+b| < 1, |a-b| < 1 et $\left|a^2 - b^2\right| < 1$. Or $a^2 - b^2 = (a+b)(a-b)$ donc la dernière condition l'est automatiquement si les deux premières le sont.

L'étude graphique est alors simple.

Exercice 121 : [énoncé]

 $A = PDP^{-1}$ avec D = diag(a + (n-1)b, a - b, ..., a - b) et

$$P = \begin{pmatrix} 1 & 1 & & (0) \\ \vdots & -1 & \ddots & \\ \vdots & & \ddots & 1 \\ 1 & (0) & & -1 \end{pmatrix}$$

 $B = Q\Delta Q^{-1}$ avec

Si n est impair : $\Delta = \operatorname{diag}(a + (n-1)b, b-a, \dots, b-a, a-b, \dots, a-b)$ et

$$Q = \begin{pmatrix} 1 & 1 & & (0) & 1 & & (0) \\ \vdots & & \ddots & & & \ddots & \\ \vdots & (0) & & 1 & (0) & & 1 \\ \vdots & 0 & \cdots & 0 & -2 & \cdots & -2 \\ \vdots & (0) & & -1 & (0) & & 1 \\ \vdots & & \ddots & & & \ddots & \\ 1 & -1 & & (0) & 1 & & (0) \end{pmatrix}$$

Si *n* pair : $\Delta = \text{diag}(a + (n-1)b, b - a, \dots, b - a, a - b, \dots, a - b)$ et

Exercice 122 : [énoncé]

Etudions la première matrice que nous noterons A.

Celle-ci est de rang 2 et on peut facilement déterminer une base de son noyau. En posant le système $AX = \lambda X$ avec $\lambda \neq 0$, on obtient une solution non nulle sous réserve que

$$\lambda^2 - \lambda - (n-1) = 0$$

En notant λ_1 et λ_2 les deux racines de cette équation, on obtient $A = PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & (0) & 1 & 1 \\ & \ddots & & \vdots & \vdots \\ (0) & & 1 & \vdots & \vdots \\ -1 & \cdots & -1 & 1 & 1 \\ 0 & 0 & 0 & \lambda_1 & \lambda_2 \end{pmatrix} \text{ et } D = \text{diag}(0, \dots, 0, \lambda_1, \lambda_2)$$

En reprenant la même démarche avec la seconde matrice que nous noterons B, on obtient $B = PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & 0 & \cdots & 0 & \lambda_1 & \lambda_2 \\ 0 & 1 & & (0) & 2 & 2 \\ \vdots & & \ddots & & \vdots & \vdots \\ \vdots & (0) & & 1 & \vdots & \vdots \\ 0 & -1 & \cdots & -1 & 2 & 2 \\ -1 & 0 & \cdots & 0 & \lambda_1 & \lambda_2 \end{pmatrix} \text{ et } D = \text{diag}(0, \dots, 0, \lambda_1, \lambda_2)$$

où λ_1,λ_2 sont les deux racines de

$$\lambda^2 - 2\lambda - 2(n-2) = 0$$

Exercice 123 : [énoncé]

Cas a = b = 0 la résolution est immédiate.

Cas a=0 et $b\neq 0$, la matrice M_n est triangulaire supérieure stricte non nulle, elle n'est pas diagonalisable.

Cas $a \neq 0$ et b = 0, idem.

 $\operatorname{Cas} a = b$

$$\chi_{M_n}(X) = (X - (n-1)a)(X+a)^{n-1}$$

avec

$$E_{(n-1)a} = Vect(1, \dots, 1)$$

et

$$E_{-a}: x_1 + \cdots + x_n = 0$$

La matrice M_n est donc diagonalisable et il est aisé de former une base de vecteurs propres.

Cas $a \neq b$ et $ab \neq 0$

Après calculs (non triviaux)

$$\chi_{M_n}(X) = (-1)^n \frac{b(X+a)^n - a(X+b)^n}{b-a}$$

Les racines de ce polynôme sont les solutions de l'équation d'inconnue $z \in \mathbb{C}$

$$\left(\frac{z+a}{z+b}\right)^n = \frac{a}{b}$$

Il y en a exactement n s'exprimant en fonction des racines n-ième de l'unité.

On en déduit que M_n est diagonalisable.

Soit λ une valeur propre de M_n et $x = (x_1, \dots, x_n) \in \mathbb{C}^n$.

L'équation $M_n x = \lambda x$ équivaut au système

$$\begin{cases}
-\lambda x_1 + bx_2 + \dots + bx_n = 0 \\
ax_1 - \lambda x_2 + \dots + bx_n = 0 \\
\vdots \\
ax_1 + \dots + ax_{n-1} - \lambda x_n = 0
\end{cases}$$

En retranchant à chaque équation la précédente, on obtient le système équivalent

$$\begin{cases}
-\lambda x_1 + bx_2 + \dots + bx_n = 0 \\
(a+\lambda)x_1 + (b+\lambda)x_2 = 0 \\
\vdots \\
(a+\lambda)x_{n-1} - (b+\lambda)x_n = 0
\end{cases}$$

Puisque ce système est de rang n-1 (car λ est valeur propre simple) et puisque les n-1 dernières équations sont visiblement indépendantes, ce système équivaut encore à

$$\begin{cases} (a+\lambda)x_1 + (b+\lambda)x_2 = 0\\ \vdots\\ (a+\lambda)x_{n-1} - (b+\lambda)x_n = 0 \end{cases}$$

La résolution de ce dernier est immédiate. On obtient pour vecteur propre $x = (x_1, \dots, x_n)$ avec

$$x_k = \left(\frac{a+\lambda}{b+\lambda}\right)^k$$

Exercice 124: [énoncé]

A est diagonalisable avec $SpA = \{1, 4\}.$

Pour P_n un polynôme vérifiant $P_n(1) = 1^n$ et $P_n(4) = 4^n$, on a $A^n = P(A)$.

$$P_n = 1^n + \frac{4^n - 1^n}{3}(X - 1)$$

convient et donc

$$A^n = \frac{4^n - 1}{3}A + \frac{4 - 4^n}{3}I_3$$

Exercice 125 : [énoncé]

- a) $\alpha = \text{tr} A = 2\cos\theta$ et $\beta = -\det A = -\cos 2\theta$ conviennent.
- b) Les racines de $X^2 2\cos\theta X + \cos 2\theta$ sont $\cos\theta + \sin\theta$ et $\cos\theta \sin\theta$. Réalisons la division euclidienne X^n par $X^2 - 2\cos\theta X + \cos 2\theta$.

$$X^{n} = (X^{2} - 2\cos\theta X + \cos 2\theta) Q(X) + R(X)$$

avec $\deg R < 2$,

$$R(\cos\theta + \sin\theta) = (\cos\theta + \sin\theta)^n$$

 $_{
m et}$

$$R(\cos\theta - \sin\theta) = (\cos\theta - \sin\theta)^n$$

On obtient

$$R = \frac{(\cos \theta + \sin \theta)^n - (\cos \theta - \sin \theta)^n}{2\sin \theta} (X - \cos \theta - \sin \theta) + (\cos \theta + \sin \theta)^n$$

et donc

$$A^{n} = \frac{(\cos \theta + \sin \theta)^{n} - (\cos \theta - \sin \theta)^{n}}{2\sin \theta} (A - (\cos \theta + \sin \theta)I_{2}) + (\cos \theta + \sin \theta)^{n} I_{n}$$

Exercice 126: [énoncé]

a) 1ère méthode :

$$\det(\lambda I_n - M) = \begin{vmatrix} \lambda & & -1 \\ & \ddots & \\ -1 & & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - (n-1) & -1 & \cdots & -1 \\ \lambda - (n-1) & \lambda & & -1 \\ \vdots & & \ddots & \\ \lambda - (n-1) & -1 & & \lambda \end{vmatrix} = (\lambda - (n-1)) \begin{vmatrix} 1 & -1 \\ 0 & \lambda + \\ \vdots \\ 0 & (0) \end{vmatrix}$$

puis $\det(\lambda I_n - M) = (\lambda - (n-1))(\lambda + 1)^{n-1}$ et donc $\operatorname{sp}(M) = \{-1, (n-1)\}$. Soit f l'application linéaire canoniquement associée à M.

$$f(x_1,...,x_n) = (x_1,...,x_n) \Leftrightarrow x_1 + ... + x_n = 0$$

Donc E_{-1} est l'hyperplan d'équation $x_1 + ... + x_n = 0$.

Puisque E_{n-1} est au moins une droite vectorielle, la matrice M est diagonalisable. 2ème méthode :

Par le calcul, on obverse que $M^2 = (n-1)I_n + (n-2)M$.

Par suite, M annule le polynôme scindé simple (X+1)(X-(n-1)) et donc M est diagonalisable.

b) Le polynôme minimal de M est (X+1)(X-(n-1)) car en vertu de la première méthode, la connaissance des valeurs propres de M détermine son polynôme minimal sachant M diagonalisable et, pour la deuxième méthode, ce polynôme est annulateur alors que les polynômes X+1 et X-(n-1) ne le sont pas.

Par division euclidienne $X^p = (X+1)(X-(n-1))Q + \alpha X + \beta$ En évaluant la relation en -1 et en n-1, on obtient

avec

$$\begin{cases} -\alpha + \beta = (-1)^p \\ \alpha(n-1) + \beta = (n-1)^p \end{cases}$$

Après résolution

$$\begin{cases} \alpha = \frac{(n-1)^p - (-1)^p}{n} \\ \beta = \frac{(n-1)^p + (n-1)(-1)^p}{n} \end{cases}$$

d'où

$$M^{p} = \frac{(n-1)^{p} - (-1)^{p}}{n} M + \frac{(n-1)^{p} + (n-1)(-1)^{p}}{n} I_{n}$$

Exercice 127 : [énoncé] a) $sp(A) = \{1, 3, -4\}.$

b) Il existe une matrice P inversible tel que $A = PDP^{-1}$ avec $D = \operatorname{diag}(1,3,-4)$. Si $M \in \mathcal{M}_n(\mathbb{C})$ est solution de l'équation $M^2 = A$ alors $(P^{-1}MP)^2 = D$ et donc $P^{-1}MP$ commute avec la matrice D. Or celle-ci est diagonale à coefficient diagonaux distincts donc $P^{-1}MP$ est diagonale de coefficients diagonaux a, b, c vérifiant $a^2 = 1, b^2 = 3$ et $c^2 = -4$. La réciproque est immédiate. Il y a 8 solutions possibles pour (a, b, c) et donc autant de solutions pour M. Les solutions réelles sont a fortiori des solutions complexes or toutes les solutions complexes vérifient $\operatorname{tr} M = a + b + c \in \mathbb{C} \setminus \mathbb{R}$. Il n'existe donc pas de solutions réelles.

Exercice 128 : [énoncé]

a) $\det(A - \lambda I) = (\lambda - 2)(\lambda - 6)$. $\begin{cases} 5x + 3y = 2x \\ x + 3y = 2y \end{cases} \Leftrightarrow x + y = 0 \text{ et } \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ est vecteur propre associé à la valeur propre 2.} \end{cases}$

 $\begin{cases} 5x + 3y = 6x \\ x + 3y = 6y \end{cases} \Leftrightarrow -x + 3y = 0 \text{ et } \begin{pmatrix} 3 \\ 1 \end{pmatrix} \text{ est vecteur propre associé à la valeur propre 6.}$

On a $A = PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$$

- b) Si M est solution alors $P^{-1}MP$ est solution de l'équation $X^2+X=D$ donc $P^{-1}MP$ et D commutent or D est diagonale à coefficients diagonaux distincts donc $P^{-1}MP$ est diagonale
- c) Les coefficients diagonaux a, b vérifient $a^2 + a = 2$ et $b^2 + b = 6$ donc a = 1 ou a = -2 et b = 2 ou b = -3. Au termes des calculs on obtient les solutions

$$\frac{1}{4}\begin{pmatrix} 7 & 3\\ 1 & 5 \end{pmatrix}, \begin{pmatrix} -2 & -3\\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 3\\ 1 & -1 \end{pmatrix}, \frac{1}{4}\begin{pmatrix} -11 & -3\\ -1 & -9 \end{pmatrix}$$

Exercice 129 : [énoncé]

a) En développant selon la dernière ligne

$$\det(\lambda . I_n - J) = \begin{vmatrix} \lambda & -1 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & -1 \\ -1 & 0 & \cdots & 0 & \lambda \end{vmatrix} = \lambda^n - 1$$

J possède exactement n valeurs propres qui sont les racines n-ième de l'unité $\omega_0,...,\omega_{n-1}$ avec $\omega_k=\mathrm{e}^{\frac{2ik\pi}{n}}$.

b) Soit $P \in GL_n(\mathbb{C})$ la matrice de passage telle que $J = PDP^{-1}$ avec $D = \operatorname{diag}(\omega_0, ..., \omega_{n-1})$.

$$A = \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_1 \\ a_1 & \cdots & a_{n-1} & a_0 \end{pmatrix} = a_0 I + a_1 J + a_2 J^2 + \dots + a_{n-1} J^{n-1}$$

donc

$$P^{-1}AP = a_0I + a_1D + a_2D^2 + \dots + a_{n-1}D^{n-1} = \operatorname{diag}((\sum_{k=0}^{n-1} a_k \omega_i^k)_{0 \leqslant i \leqslant n-1})$$

puis

$$\det A = \det(P^{-1}AP) = \prod_{i=0}^{n-1} \sum_{k=0}^{n-1} a_k \omega_i^k$$

Exercice 130 : [énoncé]

La colonne t (1 1 1) est vecteur propre associé à la valeur propre 6. Les deux matrices ont le même polynôme caractéristique et celui-ci a pour racines

6,
$$\frac{-3+i\sqrt{3}}{2}$$
 et $\frac{-3-i\sqrt{3}}{2}$

Ces deux matrices sont semblables à

$$\operatorname{diag}\left(6, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 - i\sqrt{3}}{2}\right)$$

et donc a fortiori semblables entre elles dans $\mathcal{M}_n(\mathbb{C})$, mais aussi, et c'est assez classique, dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 131 : [énoncé]

a) Pour tout élément $A \in G$, on a $A^{-1} = A$. On en déduit que pour tout $A, B \in G$,

$$AB = (AB)^{-1} = B^{-1}A^{-1} = BA$$

b) Montrons le résultat par récurrence forte sur $n \ge 1$.

Pour n=1, la propriété est immédiate.

Supposons le résultat vrai jusqu'au rang $n-1 \ge 1$.

Soit G un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$ vérifiant la propriété de l'énoncé.

S'il n'existe pas d'autre élément dans G que I_n et $-I_n$, la propriété est acquise. Sinon, il existe un élément $A \in G$ autre que I_n et $-I_n$. Puisque $A^2 = I_n$, on a

$$\ker(A - I_n) \oplus \ker(A + I_n) = \mathbb{R}^n$$

Il existe donc une matrice inversible P vérifiant

$$P^{-1}AP = \begin{pmatrix} I_r & O_{r,n-r} \\ O_{n-r,r} & -I_{n-r} \end{pmatrix}$$

Soit M un autre élément de G. Puisque A et M commutent, les sous-espaces propres de A sont stables par M et on peut donc écrire

$$P^{-1}MP = \left(\begin{array}{cc} M' & O_{r,n-r} \\ O_{n-r,r} & M'' \end{array}\right)$$

Sachant $M^2 = I_n$, on a $M'^2 = I_r$ et $M''^2 = I_{n-r}$ de sorte que les ensembles G' et G'' formés des matrices M' et M'' ainsi obtenues sont des sous-groupes de respectivement $(\mathrm{GL}_r(\mathbb{R}), \times)$ et $(\mathrm{GL}_{n-r}(\mathbb{R}), \times)$. Par hypothèse de récurrence, il existe P' et P'' inversibles telles que

$$\forall M' \in G', P'^{-1}M'P' \in D_r(\mathbb{K}) \text{ et } \forall M'' \in G'', P''^{-1}M''P'' \in D_{n-r}(\mathbb{K})$$

et en posant alors

$$Q = \begin{pmatrix} P' & O_{r,n-r} \\ O_{n-r,r} & P'' \end{pmatrix} P \in GL_n(\mathbb{R})$$

on a

$$\forall M \in G, Q^{-1}MQ \in D_n(\mathbb{K})$$

Récurrence établie.

c) Les matrices appartenant à G sont semblables, via une même matrice de passage, à des matrices diagonales dont les coefficients diagonaux ne peuvent qu'être 1 et -1. Il n'existe que 2^n matrices de ce type dans $\mathcal{M}_n(\mathbb{R})$, on en déduit

$$\operatorname{Card} G \leq 2^n$$

d) Soit φ un isomorphisme de $(GL_n(\mathbb{R}), \times)$ vers $(GL_m(\mathbb{R}), \times)$. Considérons l'ensemble G formé des matrices diagonales M de $\mathcal{M}_n(\mathbb{R})$ vérifiant $M^2 = I_n$. G est un sous-groupe de $(GL_n(\mathbb{R}), \times)$ de cardinal exactement 2^n . Puisque pour tout $M \in G$,

$$\varphi(M)^2 = \varphi(M^2) = \varphi(I_n) = I_m$$

l'ensemble $\varphi(G)$ est un sous-groupe de $(GL_m(\mathbb{R}), \times)$ vérifiant

$$\forall M' \in \varphi(G), M'^2 = I_m$$

Par l'étude qui précède, on peut affirmer

$$\operatorname{Card}\varphi(G) \leqslant 2^m$$

et puisque

$$\operatorname{Card}\varphi(G) = \operatorname{Card}G = 2^n$$

on en déduit $n \leq m$.

Un raisonnement symétrique donne $m \ge n$ et permet de conclure.

Exercice 132 : [énoncé]

Il existe des matrices $P \in \mathrm{GL}_n(\mathbb{R})$ et $D \in D_n(\mathbb{R})$ telles que

$$B = PDP^{-1}$$

Si $AB^3 = B^3A$ alors

$$APD^{3}P^{-1} = PD^{3}P^{-1}A$$

puis on obtient

$$MD^3 = D^3M$$

avec $M = P^{-1}AP$.

Notons $m_{i,j}$ le coefficient général de M et $\lambda_1,\ldots,\lambda_n$ les coefficients diagonaux de D.

La relation $MD^3 = D^3M$ donne

$$\forall (i,j) \in \{1,\ldots,n\}^2, m_{i,j}\lambda_j^3 = m_{i,j}\lambda_i^3$$

et donc

$$\forall (i,j) \in \{1,\ldots,n\}^2, m_{i,j} = 0 \text{ ou } \lambda_i^3 = \lambda_i^3$$

Comme la fonction $x \mapsto x^3$ est injective sur \mathbb{R} , on obtient

$$\forall (i,j) \in \{1,\ldots,n\}^2, m_{i,j} = 0 \text{ ou } \lambda_i = \lambda_j$$

et donc

$$MD = DM$$

puis

$$AB = BA$$

Exercice 133 : [énoncé]

On peut écrire

$$A = PDP^{-1}$$
 et $B = Q\Delta Q^{-1}$

avec $P,Q \in GL_n(\mathbb{K})$ et $D,\Delta \in \mathcal{M}_n(\mathbb{K})$ diagonales. Si $A^pMQ^q=O_n$ alors

$$D^p N \Delta^q = O_n$$

avec $N = P^{-1}MQ = (n_{i,j}).$

En notant $\lambda_1, \ldots, \lambda_n$ et μ_1, \ldots, μ_n les coefficients diagonaux de D et Δ , on obtient

$$\forall (i,j) \in \{1,\ldots,n\}^2, \lambda_i^q n_{i,j} \mu_j^q = 0$$

et donc

$$\forall (i,j) \in \left\{1,\ldots,n\right\}^2, \lambda_i n_{i,j} \mu_j = 0$$

puis

$$DN\Delta = O_n$$

ce qui permet de conclure.

Exercice 134: [énoncé]

 $\varphi(I_2) = 1$ donc si P est inversible alors $\varphi(P^{-1}) = \varphi(P)^{-1}$. Par suite, si A et B sont semblables alors $\varphi(A) = \varphi(B)$.

Puisque $\begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix}$ sont semblables, $\varphi \begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix} = \mu$ puis $\varphi \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} = \lambda \mu$. Ainsi pour A diagonale, $\varphi(A) = \det A$ et plus généralement cela vaut encore pour A diagonalisable. Si A est une matrice de $\mathcal{M}_2(\mathbb{C})$, non diagonalisable, celle-ci est semblable à une matrice de la forme $\begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix}$. Si $\lambda = 0$ alors $A^2 = 0$ et donc $\varphi(A) = 0 = \det A$.

Si $\lambda \neq 0$ alors puisque $\begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} \lambda & \alpha \\ 0 & 2\lambda \end{pmatrix}$ et que $\begin{pmatrix} \lambda & \alpha \\ 0 & 2\lambda \end{pmatrix}$ est diagonalisable, on obtient $2\varphi(A) = 2\lambda^2 = 2\det A$ et on peut conclure.

Exercice 135 : [énoncé]

Introduisons la colonne $X_n = {}^t (u_n \ v_n \ w_n)$ et la matrice

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{array}\right)$$

de sorte qu'on ait $X_{n+1} = AX_n$ et donc $X_n = A^n X_0$. Après réduction, on a $A = PDP^{-1}$ avec

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

On a alors $A^n = PD^nP^{-1}$ puis

$$X_n = PD^n P^{-1} X_0$$

La suite (X_n) converge si, et seulement si, la suite $(P^{-1}X_n)$ converge. Or

$$P^{-1}X_n = D^n P^{-1}X_0$$

converge si, et seulement si, les deux dernières coefficients de la colonne $P^{-1}X_0$ sont nuls ce qui donne X_0 de la forme

$$X_0 = P \begin{pmatrix} \lambda \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \lambda \\ \lambda \\ \lambda \end{pmatrix}$$

Finalement, les suites $(u_n)_{n\geqslant 0}$, $(v_n)_{n\geqslant 0}$ et $(w_n)_{n\geqslant 0}$ convergent si, et seulement si, $u_0=v_0=w_0$ (et ces suites sont alors en fait constantes...)

Exercice 136 : [énoncé]

Posons $T=M^2$. Il est clair que T et M commutent et l'étude de cette commutation peut, par le calcul, permettre de conclure que M est triangulaire supérieure. On peut aussi proposer une démonstration plus abstraite que voici : Les coefficients diagonaux $\lambda_1, \ldots, \lambda_n$ de T déterminent ses valeurs propres et la matrice T est donc diagonalisable. On peut donc écrire $T=PDP^{-1}$ avec P inversible et

$$D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

Puisque M est T commutent, les matrices $N=P^{-1}MP$ et D commutent. Or les matrices commutant avec une matrice diagonale à coefficients diagonaux distincts sont elles-mêmes diagonales. La matrice N est donc diagonale

$$N = \operatorname{diag}(\mu_1, \dots, \mu_n)$$

En considérant un polynôme d'interpolation $Q \in \mathbb{R}[X]$ vérifiant

$$\forall 1 \leqslant k \leqslant n, Q(\lambda_k) = \mu_k$$

on obtient N=Q(D) puis M=Q(T). En particulier, la matrice M est triangulaire supérieure.

Exercice 137: [énoncé]

a) On vérifie

$$\left(\begin{array}{cc} I_n & D \\ O_n & I_n \end{array}\right)^{-1} = \left(\begin{array}{cc} I_n & -D \\ O_n & I_n \end{array}\right)$$

b) On observe

$$\begin{pmatrix} I_n & D \\ O_n & I_n \end{pmatrix}^{-1} \begin{pmatrix} A & C \\ O_n & B \end{pmatrix} \begin{pmatrix} I_n & D \\ O_n & I_n \end{pmatrix} = \begin{pmatrix} A & E \\ O_n & B \end{pmatrix}$$

avec E = AD + C - DB.

Pour conclure, montrons qu'il existe $D \in \mathcal{M}_n(\mathbb{C})$ vérifiant DB - AD = C. Considérons pour cela l'endomorphisme φ de $\mathcal{M}_n(\mathbb{C})$ défini par

$$\varphi(M) = MB - AM$$

Pour $M \in \ker \varphi$, on a MB = AM.

Pour tout X vecteur propre de B associé à une valeur propre λ , on a

$$AMX = MBX = \lambda MX$$

Puisque λ est valeur propre de $B,\,\lambda$ n'est pas valeur propre de A et donc $MX=O_{n\,1}.$

Puisqu'il existe une base de vecteurs propres de B et puisque chacun annule M, on a $M=O_n$.

Ainsi l'endomorphisme φ est injectif, or $\mathcal{M}_n(\mathbb{C})$ est de dimension finie donc φ est bijectif. Ainsi il existe une matrice D telle $\varphi(D) = C$ et, par celle-ci, on obtient la similitude demandée.

Exercice 138 : [énoncé]

Supposons que l'équation étudiée admet une solution θ . En passant aux parties réelle et imaginaire on obtient

$$\begin{cases} \cos \theta + \cos k\theta = 1\\ \sin \theta + \sin k\theta = 0 \end{cases}$$

La deuxième équation donne

$$\theta = -k\theta$$
 [2 π] ou $\theta = \pi - k\theta$ [2 π]

Si $\theta=\pi-k\theta$ [2π] alors $\cos\theta+\cos k\theta=0$ et le système initial n'est pas vérifié. Si $\theta=-k\theta$ [2π] alors

$$\cos \theta + \cos k\theta = 1 \Leftrightarrow \cos \theta = 1/2$$

ce qui donne $\theta = \pi/3$ [2π] ou $\theta = -\pi/3$ [2π]. Cas $\theta = \pi/3$ [2π]

On obtient

$$\begin{cases} \theta = \pi/3 + 2p\pi \\ (k+1)\theta = 2q\pi \end{cases}$$

avec $p, q \in \mathbb{Z}$.

On a alors

$$(6p+1)(k+1) = 6\ell$$

Puisque $6\ell \wedge (6p+1)=1$, le théorème de Gauss donne $6\mid (k+1)$. Inversement, si $6\mid (k+1)$ alors on peut écrire $k+1=6\ell$ et pour $\theta=\pi/3$

$$e^{i\pi/3} + e^{i(6\ell-1)\pi/3} = e^{i\pi/3} + e^{-i\pi/3} = 1$$

donc l'équation étudiée admet au moins une solution.

Cas $\theta = -\pi/3$ [2 π]

Une étude semblable conduit à la même condition.

Finalement, l'équation étudiée possède une solution réelle si, et seulement si,

$$6 \mid (k+1)$$

b) Supposons que 6 divise k + 1. Pour $\theta = \pi/3$ on a

$$e^{i\theta} + e^{ik\theta} = 1$$

donc en multipliant par $e^{-ik\theta}$

$$e^{-ik\theta} = 1 + e^{-i(k-1)\theta}$$

La suite v de terme général $v_n = e^{-in\theta}$ vérifie alors

$$\forall n \in \mathbb{N}, v_{n+k} = v_n + v_{n+k-1}$$

et donc la suite u = Rev est un élément non nul de S_k . Puisque

$$u_n = \cos \frac{n\pi}{3}$$

la suite u est périodique et non nulle.

Inversement, montrons qu'il est nécessaire que 6 divise k+1 pour qu'il existe une suite périodique non nulle dans S_k . On vérifie aisément que S_k est un \mathbb{R} -espace vectoriel de dimension k dont une base est formée par les suites $e_0, e_1, \ldots, e_{k-1}$ déterminées par

$$\forall 0 \leq n \leq k-1, e_i(n) = \delta_{n,i} \text{ et } \forall n \in \mathbb{N}, e_i(n+k) = e_i(n) + e_i(n+k-1)$$

Considérons l'endomorphisme $T:(u_n)\mapsto (u_{n+1})$ opérant sur $\mathbb{R}^{\mathbb{N}}$. On vérifie aisément que T laisse stable S_k ce qui permet d'introduire l'endomorphisme induit par T sur S_k que nous noterons encore T. Affirmer l'existence d'une suite périodique non nulle dans S_k signifie que 1 est valeur propre d'une puissance T^q de T.

La matrice de T dans la base (e_0, \ldots, e_{k-1}) est

$$\begin{pmatrix} 0 & \cdots & \cdots & 0 & 0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & 0 \\ \vdots & \ddots & \ddots & 0 & 1 \\ 0 & \cdots & 0 & 1 & 1 \end{pmatrix}$$

car $T(e_{k-1}) = e_{k-1} + e_0$. Le polynôme caractéristique de T est

$$\chi_T(X) = \begin{vmatrix} -X & 0 & \cdots & 0 & 0 \\ 1 & -X & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & 0 \\ \vdots & \ddots & 1 & -X & 1 \\ 0 & \cdots & 0 & 1 & 1 - X \end{vmatrix}$$

Par l'opération $L_1 \leftarrow L_1 + XL_2 + X^2L_3 + \cdots + X^{k-1}L_k$, on obtient

$$\chi_T(X) = (-1)^k \left(X^k - X^{k-1} - 1 \right)$$

Les valeurs propres complexes de T sont alors les racines du polynôme

$$X^k - X^{k-1} - 1$$

On vérifie que ce polynôme et son polynôme dérivé n'ont pas de racines en commun; on en déduit que T admet exactement k valeurs propres complexes distinctes. L'endomorphisme T est diagonalisable dans le cadre complexe, il en est de même de T^q dont les valeurs propres sont alors les puissances qème des valeurs propres de T. Ainsi 1 est valeur propre de T^q si, et seulement si, il existe $\lambda \in \mathbb{C}$ tel que

$$\lambda^k - \lambda^{k-1} - 1 = 0 \text{ et } \lambda^q = 1$$

Un tel nombre complexe peut s'écrire $\lambda={\rm e}^{-i\theta}$ et l'on parvient alors à l'existence d'une solution à l'équation

$$e^{i\theta} + e^{ik\theta} = 1$$

et donc à la condition $6 \mid (k+1)$.

Exercice 139 : [énoncé]

Puisque $\operatorname{Im}(u - \operatorname{Id}_E) \cap \operatorname{Im}(u + \operatorname{Id}_E) = \{0_E\}$, on a

$$\operatorname{rg}(u - \operatorname{Id}_E) + \operatorname{rg}(u + \operatorname{Id}_E) \leq \dim E$$

puis par la formule du rang

$$\dim \ker(u - \operatorname{Id}_E) + \dim \ker(u + \operatorname{Id}_E) \geqslant \dim E$$

On en déduit que u est diagonalisable de valeurs propres possibles 1 et -1.

Exercice 140: [énoncé]

a) clair, notamment il n'y a pas de problème sur le degré de $\varphi(P)$.

b) $\varphi(X^k) = X^k - k(X+1)X^{k-1} = (1-k)X^k - kX^{k-1}$. La matrice de φ dans la base canonique de E est triangulaire supérieure. Les coefficients diagonaux sont alors les racines du polynôme caractéristique et ce sont donc les valeurs propres de φ à savoir $1,0,-1,\ldots,(1-n)$. Ces $n+1=\dim E$ valeurs sont distinctes donc φ est diagonalisable.

Exercice 141 : [énoncé]

L'application f est clairement linéaire de $\mathbb{R}[X]$ vers lui-même. De plus, si deg $P \leq n$, il est aisé d'observé que deg $f(P) \leq n$. On peut donc conclure que f est un endomorphisme de $\mathbb{R}_n[X]$. Pour tout $k \in \{0, \dots, n\}$,

$$f(X^k) = k(k+1)X^k - k(k-1)X^{k-2}$$

ce qui permet de former la représentation matricielle souhaitée. On constate alors que la matrice de f est triangulaire de coefficients diagonaux $0,\ldots,k(k+1),\ldots,n(n+1)$ distincts. Il est alors aisé de calculer le polynôme caractéristique de f est de conclure que f est diagonalisable, de valeurs propres $0,\ldots,k(k+1),\ldots,n(n+1)$ et de sous-espaces propres de dimension 1.

Exercice 142 : [énoncé]

a) Si deg $P \leq n-1$, il est clair que $\varphi(P) \in E$.

Si deg P = n après simplification des termes en X^{n+1} , on obtient que $\varphi(P) \in E$. La linéarité de φ est claire et donc on peut conclure que φ est un endomorphisme.

b) La matrice de φ dans la base canonique est tridiagonale et peu pratique. Formons plutôt la matrice de φ dans la base des $(X-a)^k$

$$\varphi((X-a)^k) = k(X-a)^k(X-b) - nX(X-a)^k$$

donc

$$\varphi((X-a)^k) = (k-n)(X-a)^{k+1} + (k(a-b) - na)(X-a)^k$$

et cette fois-ci la matrice de φ est triangulaire inférieure à coefficients diagonaux distincts :

$$-nb, -(a+(n-1)b), -(2a+(n-2)b), \ldots, -((n-1)a+b), -na$$

qui sont les valeurs propres de φ . Puisque φ admet n+1 valeurs propres distinctes et que dim E=n+1, on peut conclure que φ est diagonalisable

Exercice 143: [énoncé]

Si M appartient à l'hyperplan des matrices de trace nulle alors $\phi(M) = M$ et donc $M \in E_1(\phi)$.

Ainsi l'espace propre $E_1(\phi)$ est de dimension au moins égale à $n^2 - 1$. De plus, $\phi(I_n) = (n+1)I_n$ donc l'espace propre $E_{n+1}(\phi)$ est de dimension au moins égale à 1.

Puisque la somme des dimensions des sous-espaces propres est au moins égale à $n^2 = \dim \mathcal{M}_n(\mathbb{R})$, l'endomorphisme ϕ est diagonalisable (et les inégalités précédentes étaient des égalités).

Exercice 144: [énoncé]

- a) Soit P un polynôme. $P(F)(u) = P(f) \circ u$ donc $P(f) = 0 \Leftrightarrow P(F) = 0$. La diagonalisabilité étant équivalente à l'existence d'un polynôme scindé à racines simples, on peut conclure.
- b) f et F ont le même polynôme minimal donc les mêmes valeurs propres.
- c) Tout $u \in \mathcal{L}(E, E_{\lambda}(f)) \subset \mathcal{L}(E)$ est élément de $E_{\lambda}(F)$ donc

 $\dim E_{\lambda}(F) \geqslant \dim E \times \dim E_{\lambda}(f)$. Mais par diagonalisabilité $\dim \mathcal{L}(E)$) =

 $\sum_{\lambda \in \operatorname{Sp}(F)} \dim E_{\lambda}(F) \geqslant \dim E \times \sum_{\lambda \in \operatorname{Sp}(f)} \dim E_{\lambda}(f) = \dim E^{2} = \dim \mathcal{L}(E) \text{ et donc on }$

a les égalités dim $E_{\lambda}(F) = \dim E \times \dim E_{\lambda}(f)$ pour tout $\lambda \in \operatorname{Sp}(f)$.

Exercice 145 : [énoncé]

- a) oui
- b) Pour $f \in \mathcal{L}(E)$.

Si Im $f \subset \text{Im } p$ et $\ker p \subset \ker f$ alors $\mathcal{F}(f) = f$.

Un tel endomorphisme f est entièrement déterminé par sa restriction de ${\rm Im} p$ vers ${\rm Im} p$.

On en déduit

$$\dim E_1(\mathcal{F}) \geqslant (\dim \operatorname{Im} p)^2$$

Si $\operatorname{Im} f \subset \ker p$ et $\operatorname{Im} p \subset \ker f$ alors $\mathcal{F}(f) = 0$.

Un tel endomorphisme f est entièrement déterminé par sa restriction de $\ker p$ vers $\ker p$.

On en déduit

$$\dim E_0(\mathcal{F}) \geqslant (\dim \ker p)^2$$

Si $\operatorname{Im} f \subset \operatorname{Im} p$ et $\operatorname{Im} p \subset \ker f$ alors $\mathcal{F}(f) = \frac{1}{2}f$.

Un tel endomorphisme f est entièrement déterminé par sa restriction de $\ker p$ vers $\operatorname{Im} p$.

Si $\operatorname{Im} f \subset \ker p$ et $\ker p \subset \ker f$ alors $\mathcal{F}(f) = \frac{1}{2}f$.

Un tel endomorphisme f est entièrement déterminé par sa restriction de $\operatorname{Im} p$ vers $\ker p$.

De plus un endomorphisme appartenant à ces deux dernières catégories est nécessairement nul.

On en déduit

$$\dim E_{1/2}(\mathcal{F}) \geqslant 2 \dim \ker p \times \dim \operatorname{Im} p$$

Or

 $(\dim \operatorname{Im} p)^2 + 2\dim \ker p \dim \operatorname{Im} p + (\dim \ker p)^2 = (\dim \operatorname{Im} p + \dim \ker p)^2 = \dim E^2 = \dim \mathcal{L}(A_{\operatorname{Im}} + A_{\operatorname{Im}} + A_$

donc \mathcal{F} est diagonalisable avec

c) dim $E_1(\mathcal{F}) = (\dim \operatorname{Im} p)^2$, dim $E_0(\mathcal{F}) = (\dim \ker p)^2$ et dim $E_{1/2}(\mathcal{F}) = 2 \dim \ker p \times \dim \operatorname{Im} p$.

Exercice 146 : [énoncé]

On écrit

$$B = \alpha(X - x_0) \dots (X - x_n)$$

Si $P \in \mathbb{R}_n[X]$ est vecteur propre de Φ associé à la valeur propre λ alors $B \mid (A - \lambda)P$. Pour des raisons de degré, B et $A - \lambda$ ne peuvent être premiers entre eux, ces polynômes ont donc une racine commune. Ainsi il existe $i \in \{0, \dots, n\}$ tel que $\lambda = A(x_i)$. Inversement pour $\lambda = A(x_i)$,

$$P = \prod_{j=0, j \neq i}^{n} (X - x_j), \ \Phi(P) = \lambda P \text{ avec } P \neq 0. \text{ Ainsi } \mathrm{Sp}\Phi = \{A(x_i)/i \in [0, n]\}.$$

Précisons le sous-espace propre associé à la valeur propre $\lambda = A(x_i)$.

Quitte à réindexer, on peut supposer que $\lambda = A(x_0)$.

S'il existe d'autres x_i tels que $\lambda = A(x_i)$ on réindexe encore les x_1, \ldots, x_n de sorte que $\lambda = A(x_0) = \ldots = A(x_p)$ et $\lambda \neq A(x_{p+1}), \ldots, A(x_n)$. Ainsi x_0, \ldots, x_p sont racines de $A - \lambda$ alors que x_{p+1}, \ldots, x_n ne le sont pas.

Pour $P \in \mathbb{R}_n[X]$, on a $\Phi(P) = \lambda P$ si, et seulement si, $B \mid (A - \lambda)P$. Or $A - \lambda = (X - x_0) \dots (X - x_p)\tilde{A}$ avec x_{p+1}, \dots, x_n non racines de \tilde{A} . Puisque

$$(X-x_{p+1})\dots(X-x_n)\wedge \tilde{A}=1,\ B\mid (A-\lambda)P$$
 équivaut à $(X-x_{p+1})\dots(X-x_n)\mid P.$ Ainsi

$$E_{\lambda}(\Phi) = \{ (X - x_{p+1}) \dots (X - x_n)Q/Q \in \mathbb{R}_{n-p} [X] \}$$

La somme des dimensions des sous-espaces propres étant égale à la dimension de l'espace, Φ est diagonalisable.

Exercice 147: [énoncé]

L'application f est à valeurs dans $\mathbb{R}_n[X]$ car le reste R d'une division euclidienne par B vérifie

$$\deg R < \deg B \leqslant n$$

Soient $\lambda_1, \lambda_2 \in \mathbb{R}$ et $P_1, P_2 \in \mathbb{R}_n [X]$.

On a

$$AP_1 = BQ_1 + f(P_1)$$
 et $AP_2 = BQ_2 + f(P_2)$

donc

$$A(\lambda_1 P_1 + \lambda_2 P_2) = B(\lambda_1 Q_1 + \lambda_2 Q_2) + \lambda_1 f(P_1) + \lambda_2 f(P_2)$$

avec

$$\deg (\lambda_1 f(P_1) + \lambda_2 f(P_2)) \leqslant \max \{\deg f(P_1), \deg f(P_2)\} < \deg B$$

Par unicité d'une division euclidienne, on peut affirmer

$$f(\lambda_1 P_1 + \lambda_2 P_2) = \lambda_1 f(P_1) + \lambda_2 f(P_2)$$

Puisque les valeurs prises par f sont $\mathbb{R}_{n-1}[X]$, l'endomorphisme f ne peut être surjectif, ce n'est donc pas un isomorphisme.

b) Soit $\lambda \in \mathbb{R}$. Si $f(P) = \lambda P$ alors c'est qu'il existe un polynôme Q tel que

$$AP = BQ + \lambda P$$

Cas $\lambda = 0$.

On a f(P) = 0 si, et seulement si, le polynôme B divise le polynôme AP. Or A et B sont premiers entre eux, donc f(P) = 0 si, et seulement si, B divise P. On en déduit que 0 est valeur propre de f et le sous-espace propre associé est

$$E_0(f) = B.\operatorname{Vect}(1, X, \dots, X^{n-\deg B})$$

c'est-à-dire l'espace des multiples de B inclus dans $\mathbb{R}_n[X]$. Cas $\lambda \neq 0$. On obtient

$$(A - \lambda)P = BQ$$

et donc B divise le polynôme $(A - \lambda)P$. Or $\deg P < \deg B$ donc au moins une des racines de B n'est pas racine de P et est donc racine $\deg A - \lambda$. Ainsi $\lambda = A(x_k)$ avec x_k une des racines $\deg B$.

Inversement, soit x_k une racine de $B, \lambda = A(x_k)$ et

$$P_k = \prod_{i \neq k} (X - x_j) \neq 0$$

On a deg $P_k < \deg B$ et $B \mid (A - A(x_k))P_k$. On en déduit $f(P_k) = A(x_k)P_k$ et donc $A(x_k)$ est valeur propre de f et P_k en est un vecteur propre associé. c) La famille de P_k se comprend comme la famille d'interpolation de Lagrange en les x_k , elle constitue donc une base de $\mathbb{R}_{\deg B-1}[X]$. Puisque $\ker f = E_0(f)$ est un supplémentaire de cet espace, l'endomorphisme est diagonalisable.

Exercice 148: [énoncé]

Posons ϕ l'endomorphisme de $\mathcal{L}(E)$ étudié. On observe que $\phi^3 = \phi$. Par annulation d'un polynôme scindé simple, on peut affirmer que ϕ est diagonalisable de seules valeurs propres possibles 0, 1 et -1.

En introduisant une base adaptée à la projection f, la matrice de cet endomorphisme est $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$

En notant $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ la matrice de u dans cette base, on obtient :

 $\phi(u) = 0 \Leftrightarrow B = 0 \text{ et } C = 0.$

 $\phi(u) = u \Leftrightarrow A = 0, C = 0 \text{ et } D = 0.$

 $\phi(u) = -u \Leftrightarrow A = 0, B = 0 \text{ et } D = 0.$

Exercice 149 : [énoncé]

Supposons f diagonalisable et soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de vecteurs propres de f.

Pour $1 \leq i, j \leq n$, on pose $g_{i,j}$ l'endomorphisme de E déterminé par

$$g_{i,j}(e_k) = \delta_{j,k}e_i$$

La famille $(g_{i,j})$ est une base de $\mathcal{L}(E)$ et on observe

$$T(g_{i,j}) = (\lambda_i - \lambda_j)g_{i,j}$$

donc T est diagonalisable.

Supposons f nilpotente, c'est-à-dire qu'il existe $n \in \mathbb{N}^*$ pour lequel $f^n = 0$. Puisque $T^p(g)$ est combinaison linéaire de termes de la forme $f^k \circ g \circ f^{p-k}$, il est assuré que $T^{2n} = 0$ et donc que T est nilpotente.

Exercice 150: [énoncé]

a) On obtient

$$Mat_e f = \begin{pmatrix} 2 & & (1) \\ & \ddots & \\ (1) & & 2 \end{pmatrix}$$

b) D'une part

$$f(e_1 + \dots + e_n) = (n+1)(e_1 + \dots + e_n)$$

et d'autre part, pour $x = x_1e_1 + \cdots + x_ne_n$ avec $x_1 + \cdots + x_n = 0$ on a

$$f(x) = x$$

On en déduit que 1 et n+1 sont valeurs propres de f et puisque la valeur propre 1 est associé à un hyperplan, il ne peut y avoir d'autres valeurs propres. En résumé $\operatorname{Sp} f = \{1, n+1\}$ et

$$E_1(f) = \{x/x_1 + \dots + x_n = 0\}$$
 et $E_{n+1}(f) = \text{Vect}(e_1 + \dots + e_n)$

c) L'endomorphisme f est diagonalisable car

$$\dim E_1(f) + \dim E_{n+1}(f) = n$$

d) Par les valeurs propres

$$\det f = (n+1) \neq 0$$

et l'endomorphisme f est inversible...

Exercice 151: [énoncé]

a) Soit λ une valeur propre de φ .

Il existe $v \in \mathcal{L}(E) \setminus \{\tilde{0}\}$ tel que $u \circ v = \lambda v$.

Soit alors $x \in E$ tel que $v(x) \neq 0$ (ce qui est possible puisque $v \neq \tilde{0}$)

Puisque $u(v(x)) = \lambda v(x)$, on peut affirmer que λ est valeur propre de u.

Inversement soit λ une valeur propre de u et $x\neq 0$ un vecteur propre associé. Considérons v l'endomorphisme de E déterminé par

$$\forall 1 \leqslant i \leqslant n, v(e_i) = x$$

L'endomorphisme v est bien déterminé puisqu'on a ici fixé l'image d'une base. Puisque a $u \circ v = \lambda v$ (car cette égalité vaut pour les vecteurs d'une base), on obtient $\varphi(v) = \lambda v$ avec $v \neq \tilde{0}$. Ainsi λ est aussi valeur propre de φ . b et c) Sachant $E_{i,j}E_{k,\ell} = \delta_{j,k}E_{i,\ell}$,

$$UE_{i,j} = \sum_{k,\ell=1}^{n} u_{k,\ell} E_{k,\ell} E_{i,j} = \sum_{k=1}^{n} u_{k,i} E_{k,j}$$

Dans la base $((E_{1,1},\ldots,E_{n,1}),(E_{1,2},\ldots,E_{n,2}),\ldots,(E_{1,n},\ldots,E_{n,n}))$, la matrice de φ est diagonale par blocs avec des blocs diagonaux chacun égaux à U.

Exercice 152: [énoncé]

- a) $\varphi(E_{i,j}) = (\lambda_i \lambda_j)E_{i,j}$. La matrice de φ relative à la base canonique de $\mathcal{M}_n(\mathbb{K})$ est diagonale.
- b) Soit \mathcal{B} une base de E dans laquelle l'endomorphisme f est représenté par une matrice diagonale D. En introduisant l'image réciproque de la base canonique de $\mathcal{M}_n(\mathbb{K})$ par l'isomorphisme de représentation matricielle dans \mathcal{B} , on obtient une base de $\mathcal{L}(E)$ dans laquelle ϕ est représenté par une matrice diagonale.

Exercice 153: [énoncé]

On vérifie aisément que Φ est endomorphisme de $\mathcal{S}_2(\mathbb{R})$.

a) En choisissant la base de $S_2(\mathbb{R})$ formée des matrices $E_{1,1}, E_{2,2}$ et $E_{1,2} + E_{2,1}$, on obtient la matrice de Φ suivante

$$\left(\begin{array}{ccc}
2a & 0 & 2b \\
0 & 2d & 2c \\
c & b & a+d
\end{array}\right)$$

b) Par la règle de Sarrus, on calcule $\chi_{\Phi}(\lambda)$ et on obtient

$$\chi_{\Phi}(2\lambda) = -4(2\lambda - (a+d))\chi_A(\lambda)$$

- c) Posons Δ égal au discriminant de χ_A .
- Si $\Delta>0$ alors χ_Φ possède trois racines réelles distinctes

$$a+d$$
, $a+d+\sqrt{\Delta}$ et $a+d-\sqrt{\Delta}$

Si $\Delta = 0$ alors χ_{Φ} possède une racine réelle triple

$$a+d$$

Si $\Delta<0$ alors χ_{Φ} possède une racine réelle et deux racines complexes non réelles. Supposons Φ diagonalisable.

Le polynôme caractéristique de Φ est scindé sur $\mathbb R$ donc $\Delta\geqslant 0$.

Si $\Delta > 0$ alors χ_A possède deux racines réelles distinctes et donc la matrice A est diagonalisable.

Si $\Delta=0$ alors Φ est diagonalisable et ne possède qu'une seule valeur propre $\lambda=a+d$ donc l'endomorphisme Φ est une homothétie vectorielle de rapport égal à cette valeur propre. On obtient matriciellement

$$\begin{pmatrix} 2a & 0 & 2b \\ 0 & 2d & 2c \\ c & b & a+d \end{pmatrix} = \begin{pmatrix} a+d & 0 & 0 \\ 0 & a+d & 0 \\ 0 & 0 & a+d \end{pmatrix}$$

On en déduit

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right)$$

et donc la matrice A est diagonalisable.

d) Supposons A diagonalisable

Le polynôme caractéristique de A est scindé sur \mathbb{R} donc $\Delta \geq 0$.

Si $\Delta>0$ alors Φ est diagonalisable car possède 3 valeurs propres réelles distinctes. Si $\Delta=0$ alors A possède une seule valeur propre et étant diagonalisable, c'est une matrice scalaire

$$A = \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array}\right)$$

et alors la matrice de Φ est diagonale

$$\left(\begin{array}{ccc}
2a & 0 & 0 \\
0 & 2a & 0 \\
0 & 0 & 2a
\end{array}\right)$$

Exercice 154: [énoncé]

a) Notons $\lambda_1, \ldots, \lambda_n$ les n valeurs propres distinctes de f et x_1, \ldots, x_n des vecteurs propres associés. La famille (x_1, \ldots, x_n) est base de E. Posons $a = x_1 + \cdots + x_n$. Pour tout $k \in \{0, 1, \ldots, n-1\}$,

$$f^k(a) = \lambda_1^k x_1 + \dots + \lambda_n^k x_n$$

Supposons $\alpha_0 a + \alpha_1 f(a) + \cdots + \alpha_{n-1} f^{n-1}(a) = 0_E$. En exprimant cette relation en fonction des vecteurs de la famille libre (x_1, \dots, x_n) , on parvient à $P(\lambda_1) = \dots = P(\lambda_n) = 0$ avec

$$P = \alpha_0 + \alpha_1 X + \dots + \alpha_{n-1} X^{n-1}$$

Le polynôme P admet plus de racines que son degré donc P=0 puis $\alpha_0=\ldots=\alpha_{n-1}=0.$

Ainsi la famille $(a, f(a), \dots, f^{n-1}(a))$ est libre et finalement base de E. En fait, n'importe quel vecteur dont les coordonnées sont toutes non nulles dans la base de vecteur propre est solution.

b) La matrice de f dans la base considérée est de la forme

$$\begin{pmatrix}
0 & 0 & \alpha_0 \\
1 & \ddots & \vdots \\
& \ddots & 0 & \vdots \\
0 & 1 & \alpha_{n-1}
\end{pmatrix}$$

avec

$$f^{n}(a) = \alpha_{0}a + \alpha_{1}f(a) + \dots + \alpha_{n-1}f^{n-1}(a)$$

Exercice 155: [énoncé]

a) ok

b) Supposons $g \in \mathcal{C}_f$. Pour tout $\lambda \in \operatorname{Sp}(f)$ et tout $x \in E_{\lambda}(f)$,

 $f(g(x)) = g(f(x)) = g(\lambda x) = \lambda g(x)$ donc $g(x) \in E_{\lambda}(f)$. Ainsi les sous-espaces propres sont stables par g.

Inversement, supposons que chaque sous-espace propre soit stable par g. Pour tout $x \in E$, on peut écrire $x = \sum_{\lambda \in \operatorname{Sp}(f)} x_{\lambda}$ et on a

$$g(f(x)) = g\left(\sum_{\lambda \in \operatorname{Sp}(f)} \lambda x_{\lambda}\right) = \sum_{\lambda \in \operatorname{Sp}(f)} \lambda g(x_{\lambda})$$

et

$$f(g(x)) = f\left(\sum_{\lambda \in \operatorname{Sp}(f)} g(x_{\lambda})\right) = \sum_{\lambda \in \operatorname{Sp}(f)} \lambda g(x_{\lambda})$$

donc f et g commutent.

c) Considérons $\varphi: \mathcal{L}(E) \to \prod_{\lambda \in \mathrm{Sp}(f)} \mathcal{L}(E_{\lambda}(f))$ l'endomorphisme défini par $\varphi(g)$ est

le produit des restrictions aux $E_{\lambda}(f)$ de g. Cette application est bien définie en vertu des stabilités évoquées en b). Cette application est clairement bijective car, par diagonalisabilité de f, $E = \bigoplus_{\lambda \in \operatorname{Sp}(f)} E_{\lambda}(f)$ et qu'on sait une application g est

alors entièrement déterminée par ses restrictions aux $E_{\lambda}(f)$. Par isomorphisme $\dim \mathcal{C}_f = \sum_{\lambda \in Sp(f)} \alpha_{\lambda}^2$.

d) Ici dim $C_f = n$ et les Id, f, \ldots, f^{n-1} sont clairement éléments de C_f . Supposons $\lambda_0 \text{Id} + \lambda_1 f + \cdots + \lambda_{n-1} f^{n-1} = 0$. Posons

 $P = \lambda_0 + \lambda_1 X + \dots + \lambda_{n-1} X^{n-1}$. Ce polynôme est annulateur de f donc les valeurs propres de f en sont racines. Ce polynôme possède au moins n racines, or il est de degré strictement inférieur à n, donc il est nul et ainsi

 $\lambda_0 = \ldots = \lambda_{n-1} = 0.$

Finalement (Id, f, \ldots, f^{n-1}) est une famille libre formé de $n = \dim \mathcal{C}_f$ éléments de \mathcal{C}_f , c'en est donc une base.

Exercice 156: [énoncé]

a) Un endomorphisme non nul vérifiant $f^2 = 0$ avec $f \neq 0$ convient. C'est le cas

d'un endomorphisme représenté par la matrice

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

b) Soit (e_1, \ldots, e_n) une base de vecteurs propres de f. La matrice de f dans cette base est de la forme

$$\left(\begin{array}{ccc}
\lambda_1 & & (0) \\
& \ddots & \\
(0) & & \lambda_n
\end{array}\right)$$

et alors les espaces

$$\ker f = \operatorname{Vect} \{e_i/\lambda_i = 0\} \text{ et } \operatorname{Im} f = \operatorname{Vect} \{e_i/\lambda_i \neq 0\}$$

sont évidemment supplémentaires (puisque associés à des regroupements de vecteurs d'une base).

c) On vérifie $\ker f^k \subset \ker f^{k+1}$. La suite des dimensions des noyaux des f^k est croissante et majorée par n. Elle est donc stationnaire et il existe $k \in \mathbb{N}$ tel que

$$\forall \ell \geqslant k, \dim \ker f^{\ell+1} = \dim \ker f^{\ell}$$

Par inclusion et égalité des dimensions

$$\forall \ell \geq k$$
, ker $f^{\ell+1} = \ker f^{\ell}$

En particulier $\ker f^{2k} = \ker f^k$. On peut alors établir $\operatorname{Im} f^k \cap \ker f^k = \{0_E\}$ et par la formule du rang on obtient la supplémentarité

$$\operatorname{Im}(f^k) \oplus \ker(f^k) = E$$

L'endomorphisme f^k n'est pas nécessairement diagonalisable. Pour s'en convaincre il suffit de choisir pour f un automorphisme non diagonalisable. d) Le résultat n'est plus vrai en dimension infinie comme le montre l'étude de l'endomorphisme de dérivation dans l'espace des polynômes.

Exercice 157 : [énoncé]

Pour $\lambda = |\lambda| e^{i\alpha} \in \mathbb{C}$ avec $\alpha \in [0, 2\pi[$, on pose

$$\sqrt{\lambda} = \sqrt{|\lambda|} e^{i\alpha/2}$$

ce qui définit une notion de racine carrée sur les nombres complexes et nous permettra de nous exprimer avec plus d'aisance...

a) Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de vecteur propre de v. La matrice de v dans cette base est de la forme

$$D = \left(\begin{array}{ccc} \lambda_1 & & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{array}\right)$$

Considérons l'endomorphisme u de E défini par

$$\operatorname{Mat}_{\mathcal{B}} u = \begin{pmatrix} \sqrt{\lambda_1} & & (0) \\ & \ddots & \\ (0) & & \sqrt{\lambda_n} \end{pmatrix} = \Delta$$

On vérifie aisément que $u^2 = v$.

b) Par les polynômes interpolateurs de Lagrange, on peut introduire un polynôme $P\in\mathbb{C}\left[X\right]$ vérifiant

$$\forall \lambda \in \operatorname{Sp}u, P(\lambda) = \sqrt{\lambda}$$

On observe alors

$$P(D) = \begin{pmatrix} P(\lambda_1) & (0) \\ & \ddots & \\ (0) & P(\lambda_n) \end{pmatrix} = \Delta$$

et donc P(v) se confond avec l'endomorphisme u précédemment introduit.

Exercice 158 : [énoncé]

- a) Puisque f possède n valeurs propres en dimension n, il est diagonalisable et ses valeurs propres sont simples. Les sous-espaces propres de f sont donc de dimension 1.
- b) $g \circ f = g^3 = f \circ g$.

Puisque f et g commutent, les sous-espaces propres de f sont stables par g. Si x est vecteur propre de f associé à la valeur propre λ alors g(x) appartient au même sous-espace propre et puisque celui-ci est une droite et que x est non nul, g(x) est colinéaire à x. Ainsi x est vecteur propre de g.

c) Notons $\lambda_1, \ldots, \lambda_n$ les valeurs propres de f et considérons une base de vecteurs propres de f dans laquelle la matrice de f est

$$D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

Un endomorphisme g de E vérifiant $g^2 = f$ a une matrice diagonale dans la base de vecteurs propres de f précédente.

Résoudre l'équation $g^2=f$ revient alors à résoudre l'équation $\Delta^2=D$ avec Δ la matrice diagonale

$$\Delta = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$$

L'équation $\Delta^2 = D$ équivaut à

$$\forall 1 \leqslant i \leqslant n, \alpha_i^2 = \lambda_i$$

Si les λ_i ne sont pas tous positifs ou nuls, il n'y a pas de solutions.

Si les λ_i sont tous positifs ou nuls alors les solutions de l'équation $g^2 = f$ sont les endomorphismes représentés dans la base de vecteurs propres de f par les matrices

$$\operatorname{diag}(\pm\sqrt{\lambda_1},\ldots,\pm\sqrt{\lambda_n})$$

Si aucune des valeurs propres n'est nulle, il y a 2^n solutions et si l'une d'elle est nulle, il y a 2^{n-1} solutions.

Exercice 159: [énoncé]

Il est bien connu que les polynômes en f commutent avec f.

Inversement, soit q un endomorphisme commutant avec f.

Notons $\lambda_1, \ldots, \lambda_n$ les valeurs propres deux à deux distinctes de f et e_1, \ldots, e_n des vecteurs propres associés. La famille (e_1, \ldots, e_n) est une base de E diagonalisant f et les sous-espaces propres de f sont de dimension 1. Puisque f et g commutent, ses sous-espaces propres de f sont stables par g et donc, pour tout $k \in \{1, \ldots, n\}$, il existe μ_k tel que $g(e_k) = \mu_k e_k$. Considérons alors un polynôme interpolateur P vérifiant

$$\forall k \in \{1,\ldots,n\}, P(\lambda_k) = \mu_k$$

On a pour tout $k \in \{1, \ldots, n\}$,

$$P(f)(e_k) = P(\lambda_k)(e_k) = \mu_k e_k = g(e_k)$$

Puisque les applications linéaires P(f) et g sont égales sur une base, on peut conclure

$$P(f) = g$$

Exercice 160 : [énoncé]

Soient $\lambda \in \operatorname{Sp}(u)$ et $x \in E_{\lambda}(u)$ non nul. On a

$$v^3(x) = u^3(x) = \lambda^3 x$$

Or v est diagonalisable donc, en notant μ_1, \ldots, μ_p les valeurs propres de v, on a la décomposition en somme directe

$$E = \bigoplus_{j=1}^{p} E_{\mu_j}(v)$$

On peut alors écrire $x=\sum\limits_{j=1}^p x_j$ avec $x_j\in E_{\mu_j}(u).$ L'égalité $v^3(x)=\lambda^3x$ donne

$$\sum_{j=1}^{p} \mu_j^3 x_j = \sum_{j=1}^{p} \lambda^3 x_j$$

Les espaces $E_{\mu_j}(v)$ étant en somme directe, on peut identifier les termes de ces sommes

$$\mu_j^3 x_j = \lambda^3 x_j$$

Si $x_j \neq 0_E$, on obtient $\mu_j = \lambda$ et donc $\mu_j x_j = \lambda x_j$.

Si $x_j = 0_E$, l'identité $\mu_j x_j = \lambda x_j$ reste vraie.

On en déduit

$$v(x) = \lambda x = u(x)$$

Ainsi les endomorphismes v et u coïncident sur $E_{\lambda}(u)$. Or, l'endomorphisme u étant diagonalisable, E est la somme des sous-espaces propres de u. Les endomorphismes v et u coïncident donc sur E.

Exercice 161: [énoncé]

Son polynôme caractéristique est scindé.

Exercice 162: [énoncé]

a) Si $B = O_n$ alors tout vecteur propre de A (et il en existe car le corps de base est \mathbb{C}) est aussi vecteur propre de B.

Si $B \neq O_n$ alors l'espace ImB est stable par B et il existe alors un vecteur propre de B dans ImB. Puisque Im $B \subset \ker A$ car $AB = O_n$, ce vecteur propre de B est aussi vecteur propre de A (associé à la valeur propre 0).

b) Par récurrence sur la taille n des matrices.

Pour n = 1, c'est immédiat.

Supposons la propriété vérifiée au rang $n-1 \ge 1$.

Soit $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant $AB = O_n$. Soit X_1 un vecteur propre commun aux matrices A et B associé aux valeurs propres λ et μ respectivement. Soit P une matrice inversible dont la première colonne est X_1 . Par changement de base on a

$$P^{-1}AP = \begin{pmatrix} \lambda & \star \\ 0 & A' \end{pmatrix} \text{ et } P^{-1}BP = \begin{pmatrix} \mu & \star \\ 0 & B' \end{pmatrix}$$

Puisque $AB = O_n$ on a $\lambda \mu = 0$ et $A'B' = O_{n-1}$.

Par hypothèse de récurrence, il existe une matrice $Q \in GL_{n-1}(\mathbb{C})$ telle que $Q^{-1}A'Q$ et $Q^{-1}B'Q$ sont triangulaires supérieures. Pour la matrice

$$R = P \times \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \in GL_n(\mathbb{C})$$

on obtient $R^{-1}AR$ et $R^{-1}BR$ triangulaires supérieures. Récurrence établie

Exercice 163: [énoncé]

a) $\chi_A(X) = (X+1)(X-1)^2$.

b) $E_{-1} = \text{Vect}^t (1 \ 1 \ 2), E_1 = \text{Vect}^t (1 \ 0 \ 1).$

La matrice A n'est pas diagonalisable mais on peut la rendre semblable à la matrice

$$T = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

On prend $C_1 = {}^t (1 \ 1 \ 2), C_2 = {}^t (1 \ 0 \ 1).$

On détermine C_3 tel que $AC_3 = C_3 + C_2$. $C_3 = t'(0 -1 0)$ convient. Pour

$$P = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{array}\right)$$

on a $P^{-1}AP = T$.

Exercice 164: [énoncé]

a) $\chi_A(X) = (X-1)^3$.

b) $E_1 = \text{Vect}^t (1 \ 0 \ 1)$.

La matrice A n'est pas diagonalisable, mais on peut la rendre semblable à la matrice

$$T = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

On prend $C_1 = {}^t (1 \ 0 \ 1)$.

On détermine C_2 tel que $AC_2 = C_2 + C_1$. $C_2 = {}^t (0 \ 1 \ 0)$ convient.

On détermine C_3 tel que $AC_3 = C_3 + C_2$. $C_3 = {}^t (0 - 1 1)$ convient.

Pour

$$P = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{array}\right)$$

on a $P^{-1}AP = T$.

Exercice 165 : [énoncé]

Le polynôme caractéristique $\chi_A(X) = (X-1)^3$ est scindé donc A est trigonalisable.

On a

$$E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}\right)$$

et puisque

$$A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

on a $A = PTP^{-1}$ avec

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Exercice 166: [énoncé]

Notons A la matrice étudiée.

Après calcul, son polynôme caractéristique est $\chi_A = (X-9)^3$.

Celui-ci est scindé et par conséquent la matrice A est trigonalisable.

Après résolution

$$E_9(A) = \text{Vect}(1, 1, -1/2)$$

 $\dim E_9(A) = 1$ et $X_1 = {}^t \left(\begin{array}{cc} 1 & 1 & -1/2 \end{array} \right)$ est vecteur propre. Complétons ce vecteur en une base et considérons la matrice de passage associée

$$P = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1/2 & 0 & 1 \end{array}\right)$$

On a

$$P^{-1}AP = \left(\begin{array}{ccc} 9 & -5 & -2\\ 0 & 12 & -6\\ 0 & 3/2 & 6 \end{array}\right)$$

Considérons alors la sous matrice

$$A' = \left(\begin{array}{cc} 12 & -6\\ 3/2 & 6 \end{array}\right)$$

de polynôme caractéristique $(X-9)^2$ car $\chi_A(X)=(X-9)\chi_{A'}(X)$. Après résolution

$$E_9(A') = \text{Vect}(1, 1/2)$$

Considérons la matrice de passage

$$P' = \left(\begin{array}{cc} 1 & 0\\ 1/2 & 1 \end{array}\right)$$

On a

$$(P'^{-1})A'P' = \begin{pmatrix} 9 & -6 \\ 0 & 9 \end{pmatrix}$$

Enfin, pour

$$Q = P \times \left(\begin{array}{cc} 1 & 0 \\ 0 & P' \end{array}\right) = \left(\begin{array}{cc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1/2 & 1/2 & 1 \end{array}\right)$$

on obtient

$$Q^{-1}AQ = \left(\begin{array}{ccc} 9 & -6 & -2\\ 0 & 9 & -6\\ 0 & 0 & 9 \end{array}\right)$$

Exercice 167: [énoncé]

a)
$$\chi_A = X(X-1)(X-a)$$
.

Si $a \neq 0, 1$ alors A est diagonalisable.

Si a = 0 alors $\operatorname{rg} A = 2$ donc dim $\ker A = 1 < m_0(A)$ et la matrice A n'est pas diagonalisable.

Si a=1 alors $\operatorname{rg}(A-I)=2$ et par le même argument qu'au dessus, A n'est pas diagonalisable.

On conclut

$$\Omega = \{0, 1\}$$

b) Cas a = 0

$$\ker A = \operatorname{Vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 et $\ker(A - I_3) = \operatorname{Vect} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$

Par conséquent la matrice suivante convient

$$P = \left(\begin{array}{ccc} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{array}\right)$$

Cas a = 1 $\ker A = \operatorname{Vect}\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ et $\ker(A - I_3) = \operatorname{Vect}\begin{pmatrix} 1\\1\\1 \end{pmatrix}$

Par conséquent la matrice suivante convient

$$P = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right)$$

Exercice 168: [énoncé]

 (\Rightarrow) Supposons f et g commutent.

$$\forall x \in \ker(f - \lambda.\mathrm{Id}), (f - \lambda\mathrm{Id})(g(x)) = g(f(x) - \lambda x) = 0$$

donc $\ker(f - \lambda \mathrm{Id})$ est stable par q.

(\Leftarrow) Supposons que chaque sous-espace propre soit stable par g. Puisque $E = \bigoplus_{\lambda \in \operatorname{Sp}(f)} E_{\lambda}(f)$, pour tout $x \in E$, on peut écrire $x = \sum_{\lambda \in \operatorname{Sp}(f)} x_{\lambda}$ avec

 $x_{\lambda} \in E_{\lambda}$ et alors

$$(g \circ f)(x) = \sum_{\lambda \in \operatorname{Sp}(f)} \lambda g(x_{\lambda}) = (f \circ g)(x)$$

donc $f \circ g = g \circ f$.

Exercice 169: [énoncé]

Rappelons que tout endomorphisme d'un \mathbb{C} -espace vectoriel possède au moins un valeur propre.

1ère démarche : Soit λ une valeur propre de f. $E_{\lambda}(f)$ est stable par f et donc possède un supplémentaire F stable par f.

Si $F = \{0_E\}$ alors f est diagonalisé.

Sinon, la restriction de f à F possède au moins une valeur propre μ qui est bien entendu valeur propre de f. L'espace $E_{\lambda}(f) \oplus E_{\mu}(f)$ est stable par f et donc possède un supplémentaire G stable par f.

Si $G = \{0_E\}$ alors f est diagonalisé.

Sinon, on itère le processus.

2ème démarche : Le sous-espace vectoriel $F = \bigoplus_{\lambda \in \operatorname{Sp} f} E_{\lambda}(f)$ est stable par f, il admet donc un supplémentaire stable G, si $G \neq \{0_E\}$ alors f_G admet un vecteur propre qui sera aussi vecteur propre de f donc élément de F. C'est contradictoire donc $G = \{0_E\}$ puis

$$E = \bigoplus_{\lambda \in \operatorname{Sp} f} E_{\lambda}(f)$$

ce qui affirmer f diagonalisable.

Exercice 170: [énoncé]

Les endomorphismes recherchés sont les endomorphismes diagonalisables. En effet, si f est diagonalisable et si F est un sous-espace vectoriel stable par f alors puisque f_F est diagonalisable, il existe une base de F formée de vecteurs propres de f. En complétant cette base à l'aide de vecteur bien choisis dans une base diagonalisant f, les vecteurs complétant engendrent un supplémentaire de F stable par f.

Inversement, si $f \in \mathcal{L}(E)$ vérifie la propriété proposée alors le sous-espace vectoriel $F = \underset{\lambda \in \operatorname{Sp} f}{\oplus} E_{\lambda}(f)$ étant stable par f, celui-ci admet un supplémentaire stable. Or f

ne possède pas de vecteurs propres sur ce dernier et celui ne peut donc qu'être $\{0\}$ car ici le corps de base est \mathbb{C} . Par suite F=E et donc f est diagonalisable.

Exercice 171 : [énoncé]

- a) Si $e \notin H$ alors la valeur de u(e) détermine entièrement un élément u de $\{u \in E^*/u(H) = \{0\}\}$. Cela permet de mette en place un isomorphisme entre $\{u \in E^*/u(H) = \{0\}\}$ et \mathbb{K} . La dimension cherchée vaut 1.
- b) Si H est stable par f alors pour tout $x \in H$, u(f(x)) = 0 donc $u \circ f \in \{v \in E^*/v(H) = \{0\}\}$ or u est un élément non nul de cette droite vectorielle donc $u \circ f$ est colinéaire à u. La réciproque est immédiate.
- c) $\mathrm{Mat}_{\mathcal{B}}(u)=L\neq 0$ (car u définit une équation d'hyperplan), $\mathrm{Mat}_{\mathcal{B}}(u\circ f)=LA$ donc

$$u \circ f = \lambda u \Leftrightarrow LA = \lambda L \Leftrightarrow {}^tA^tL = \lambda^tL$$

avec tL colonne non nulle.

d) $\operatorname{Sp}({}^tA)=\{1,2,-1\}$. Une base de vecteurs propres est formée des vecteurs de composantes (-1,-1,1), (0,1,1) et (-1,0,1). Les plans stables par f sont ceux d'équations x+y-z=0, y+z=0 et x-z=0.

Exercice 172: [énoncé]

Si l'endomorphisme u possède une valeur propre alors la droite vectorielle engendrée par un vecteur propre associé est évidemment stable par u. Sinon, la matrice réelle A représentant u dans une base n'a que des valeurs propres complexes non réelles. Parmi celles-ci considérons en une que nous notons λ . Il existe alors une colonne complexe Z non nulle telle que $AZ = \lambda Z$. En écrivant $\lambda = \alpha + i\beta$ et Z = X + iY avec α, β, X, Y réels, l'équation précédente donne

$$AX = \alpha X - \beta Y$$
 et $AY = \beta X + \alpha Y$

Considérons ensuite les vecteurs x et y de E représentés par les colonnes réelles X et Y. Les relations précédentes donnent

$$u(x), u(y) \in Vect(x, y)$$

et donc le sous-espace vectoriel Vect(x, y) est stable par u.

Or celui-ci n'est pas nul car $Z \neq 0$ et est donc de dimension 1 ou 2 (et en fait 2 car l'absence de valeurs propres réelles dans le cas présent signifie l'absence de droite vectorielle stable).

Exercice 173 : [énoncé]

a) Par l'absurde supposons X et Y colinéaires. Il existe alors une colonne X_0 réelle telle que

$$X = \alpha X_0$$
 et $Y = \beta X_0$ avec $(\alpha, \beta) \neq (0, 0)$

On a alors $Z = (\alpha + i\beta)X_0$ et la relation $AZ = \lambda Z$ donne

$$(\alpha + i\beta)AX_0 = \lambda(\alpha + i\beta)X_0$$

Puisque $\alpha + i\beta \neq 0$, on peut simplifier et affirmer $AX_0 = \lambda X_0$. Or X_0 est une colonne réelle donc, en conjuguant, $AX_0 = \bar{\lambda}X_0$ puis $\lambda \in \mathbb{R}$ ce qui est exclu. b) On écrit $\lambda = a + ib$ avec $a, b \in \mathbb{R}$. La relation $AZ = \lambda Z$ donne en identifiant parties réelles et imaginaires

$$AX = aX - bY$$
 et $AY = aY + bX$

On en déduit que Vect(X, Y) est stable par A.

c) Le polynôme caractéristique de f est

$$(X+1)(X-2)(X^2-2X+2)$$

Les valeurs propres de A sont -1, 2 et $1 \pm i$ avec

$$E_{-1}(A) = \operatorname{Vect}^{t}(0,0,1,0), E_{2}(A) = \operatorname{Vect}^{t}(1,1,0,1) \text{ et } E_{1+i}(A) = \operatorname{Vect}^{t}(i,-1,0,1)$$

Soit P un plan stable par f. Le polynôme caractéristique de l'endomorphisme u induit par f sur ce plan divise le polynôme caractéristique de f tout en étant réel et de degré 2. Ce polynôme caractéristique ne peut qu'être

$$(X+1)(X-2)$$
 ou X^2-2X+2

Dans le premier cas, 1 et 2 sont valeurs propres de u et les vecteurs propres associés sont ceux de f. Le plan P est alors

Vect
$$\{(0,0,1,0),(1,1,0,1)\}$$

Dans le second cas, pour tout $x \in P$, on a par le théorème de Cayley Hamilton

$$u^2(x) - 2u(x) + 2x = 0_E$$

et donc la colonne X des coordonnées de x vérifie

$$X \in \ker(A^2 - 2A + 2I_4)$$

Après calculs, on obtient

$$X \in \text{Vect}(^t(1,0,0,0), ^t(0,-1,0,1))$$

Ainsi le plan est inclus dans le plan

$$Vect \{(1,0,0,0), (0,-1,0,1)\}$$

ce qui suffit à le déterminer.

Exercice 174 : [énoncé]

Cas $\mathbb{K} = \mathbb{C}$

u annule un polynôme scindé simple, l'endomorphisme u est donc diagonalisable. Tout sous-espace vectoriel possédant une base de vecteurs propres est stable et inversement.

Cas $\mathbb{K} = \mathbb{R}$

Par le lemme de décomposition des noyaux, on a

$$E = \ker(u - \operatorname{Id}) \oplus \ker(u^2 + u + \operatorname{Id})$$

Si F est un sous-espace vectoriel stable alors posons

$$F_1 = F \cap \ker(u - \mathrm{Id})$$

et

$$F_2 = F \cap \ker(u^2 + u + \mathrm{Id})$$

Montrons $F = F_1 \oplus F_2$.

Tout $x \in F$ peut s'écrire x = a + b avec $a \in \ker(u - \operatorname{Id})$ et $b \in \ker(u^2 + u + \operatorname{Id})$.

Puisque $u(x) = a + u(b) \in F$ et $u^2(x) = a + u^2(b) \in F$, on a

 $a = \frac{1}{3} (x + u(x) + u^2(x)) \in F$ puis $b = x - a \in F$.

Ainsi $a \in F_1$, $b \in F_2$ et on a donc $F \subset F_1 + F_2$.

Il est alors immédiat qu'on peut alors conclure $F = F_1 \oplus F_2$.

Puisque $F_2 \subset \ker(u^2 + u + \operatorname{Id})$, pour $x \in F_2$ non nul (x, u(x)) est libre et $\operatorname{Vect}(x, u(x))$ est stable par u. Cela permet d'établir que F_2 est la somme directe de sous-espaces vectoriels de la forme $\operatorname{Vect}(x, u(x))$ avec $x \neq 0$,

 $x \in \ker(u^2 + u + \operatorname{Id})$. Quant à F_1 , il n'y a pas de condition à souligner puisque tout sous-espace vectoriel de $\ker(u - \operatorname{Id})$ est stable par u.

Exercice 175 : [énoncé]

Si F admet une base de vecteurs propres, il est immédiat d'établir qu'il est stable par u.

Inversement, si F est stable alors u_F est diagonalisable et donc il existe une base de F formée de vecteurs propres de u.

Exercice 176: [énoncé]

 $\operatorname{Sp} f = \{2, 4, 6\}, E_2(A) = \operatorname{Vect} e_1, E_4(A) = \operatorname{Vect} e_2 \text{ et } E_6(A) = \operatorname{Vect} e_3 \text{ avec } e_1 = (0, 1, 1), e_2 = (1, 0, 1), e_3 = (1, 1, 0).$

Si V est un sous-espace vectoriel stable alors f_V est diagonalisable et donc possède une base de vecteurs propres de f. Ainsi $V = \{0\}$, $\text{Vect}(e_i)$ avec $i \in \{1, 2, 3\}$, $\text{Vect}(e_j, e_k)$ avec $j \neq k \in \{1, 2, 3\}$ ou $V = \mathbb{R}^3$.

Exercice 177: [énoncé]

Sur \mathbb{C} , A est trigonalisable semblable à une matrice triangulaire supérieure ou sur la diagonale figurent les valeurs propres complexes de A comptées avec multiplicité.

Exercice 178 : [énoncé]

- a) A est annule le polynôme χ_A qui est scindé donc A est trigonalisable.
- b) Soit T une matrice triangulaire semblable à A. Les coefficients diagonaux de T sont les valeurs propres de A comptées avec multiplicité. Cependant A^k est semblables à T^k donc les valeurs propres de A^k sont les coefficients diagonaux de T^k or ceux-ci sont les puissances d'ordre k des coefficients diagonaux de T c'est-à-dire des valeurs propres de A.

Exercice 179 : [énoncé]

La matrice A est semblable à une matrice triangulaire de la forme

$$\left(\begin{array}{ccc}
\lambda_1 & & \star \\
& \ddots & \\
0 & & \lambda_n
\end{array}\right)$$

et donc A^q est semblable à

$$\left(egin{array}{ccc} \lambda_1^q & & \star & \\ & \ddots & \\ 0 & & \lambda_n^q \end{array}
ight)$$

Ainsi le polynôme caractéristique de A^q est celui voulu avec $A^q \in \mathcal{M}_n(\mathbb{Z})$.

Exercice 180 : [énoncé]

A est semblable à une matrice triangulaire supérieure de la forme

$$\left(\begin{array}{ccc} \lambda_1 & & \star \\ & \ddots & \\ 0 & & \lambda_n \end{array}\right)$$

 $\exp(A)$ est alors semblable à une matrice de la forme

$$\begin{pmatrix}
\exp(\lambda_1) & \star' \\
& \ddots \\
0 & \exp(\lambda_n)
\end{pmatrix}$$

Cela suffit pour conclure.

Exercice 181 : [énoncé]

Puisque le polynôme χ_A est scindé, la matrice A est trigonalisable. Plus précisément, la matrice A est semblable à une matrice de la forme

$$\begin{pmatrix}
\lambda_1 & & \star \\
& \ddots & \\
(0) & & \lambda_n
\end{pmatrix}$$

La matrice P(A) est alors semblable à

$$\begin{pmatrix}
P(\lambda_1) & \star \\
& \ddots \\
(0) & P(\lambda_n)
\end{pmatrix}$$

et donc

$$\chi_{P(A)} = \prod_{k=1}^{n} (X - P(\lambda_k))$$

Exercice 182 : [énoncé]

a) Commencons par quelques cas particuliers.

Si
$$A=\left(\begin{array}{cc}\lambda&0\\0&\lambda\end{array}\right)$$
 alors $A\in\mathbb{K}\left[B\right]$ en s'appuyant sur un polynôme constant.

Si
$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
 avec $\lambda_1 \neq \lambda_2$ alors les matrices qui commutent avec A sont

diagonales donc B est de la forme $\begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{pmatrix}$. En considérant P=aX+b tel que $P(\lambda_1) = \alpha_1$ et $P(\lambda_2) = \alpha_2$, on à $B = P(A) \in \mathbb{K}[A]$.

Si $A = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ avec $\mu \neq 0$, une étude de commutativité par coefficients inconnus donne $B = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$. Pour $P = \frac{\beta}{\mu}X + \gamma$ avec $\frac{\beta\lambda}{\mu} + \gamma = \alpha$, on a

inconnus donne
$$B = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$$
. Pour $P = \frac{\beta}{\mu}X + \gamma$ avec $\frac{\beta\lambda}{\mu} + \gamma = \alpha$, on $B = P(A) \in \mathbb{K}[A]$.

Enfin, dans le cas général, A est semblable à l'un des trois cas précédent via une matrice $P \in GL_2(\mathbb{K})$. La matrice $B' = P^{-1}BP$ commute alors avec $A' = P^{-1}AP$ donc B' est polynôme en A' et par le même polynôme B est polynôme en A. b) On imagine que non, reste à trouver un contre-exemple.

Par la recette dite des « tâtonnements successifs »ou saisi d'une inspiration venue d'en haut, on peut proposer

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

On vérifie que A et B commutent et ne sont ni l'un ni l'autre polynôme en l'autre car tout polynôme en une matrice triangulaire supérieure est une matrice triangulaire supérieure.

Exercice 183 : [énoncé]

La matrice A est trigonalisable et si l'on note $\lambda_1, \ldots, \lambda_p$ ses valeurs propres distinctes alors $\operatorname{tr}(A^m) = \sum_{j=1}^p \alpha_j \lambda_j^m$ avec α_j la multiplicité de la valeur propre λ_j .

Pour conclure, il suffit d'établir résultat suivant :

« Soient $\alpha_1, \ldots, \alpha_p \in \mathbb{C}^*$ et $\lambda_1, \ldots, \lambda_p \in \mathbb{C}$ deux à deux distincts.

Si
$$\sum_{j=1}^{p} \alpha_j \lambda_j^m \xrightarrow[m \to +\infty]{} 0$$
 alors $\forall 1 \leqslant j \leqslant p, |\lambda_j| < 1$ ».

Raisonnons pour cela par récurrence sur $p \ge 1$.

Pour p = 1, la propriété est immédiate.

Supposons la propriété vraie au rang $p \ge 1$.

Soient $\alpha_1, \ldots, \alpha_{p+1} \in \mathbb{C}^*$ et $\lambda_1, \ldots, \lambda_{p+1} \in \mathbb{C}$ deux à deux distincts tels que

$$\sum_{j=1}^{p+1} \alpha_j \lambda_j^m \xrightarrow[m \to +\infty]{} 0 (1)$$

Par décalage d'indice, on a aussi

$$\sum_{j=1}^{p+1} \alpha_j \lambda_j^{m+1} \xrightarrow[m \to +\infty]{} 0 (2)$$

 $\lambda_{p+1} \times (1) - (2)$ donne

$$\sum_{j=1}^{p} \alpha_j (\lambda_{p+1} - \lambda_j) \lambda_j^m \xrightarrow[m \to +\infty]{} 0$$

qui se comprend encore

$$\sum_{j=1}^{p} \beta_j \lambda_j^m \xrightarrow[m \to +\infty]{} 0$$

avec les β_1, \ldots, β_p non nuls.

Par hypothèse de récurrence, on a alors $\forall 1 \leq j \leq p, |\lambda_j| < 1$.

On en déduit $\sum_{j=1}^{p} \alpha_j \lambda_j^m \xrightarrow[m \to +\infty]{} 0$ et la relation (1) donne alors

 $\alpha_{p+1}\lambda_{p+1}^m \xrightarrow[m \to +\infty]{} 0$ d'où l'on tire $|\lambda_{p+1}| < 1$.

Récurrence établie.

Exercice 184 : [énoncé]

Notons $\lambda_1, \ldots, \lambda_p$ et μ_1, \ldots, μ_q les valeurs propres deux à deux distinctes des matrices A et B respectivement.

L'hypothèse de travail donne

$$\forall m \in \mathbb{N}, \sum_{i=1}^{p} m_{\lambda_j}(A) \lambda_j^m = \sum_{i=1}^{q} m_{\mu_k}(B) \mu_k^m$$

Avec des notations étendues, ceci donne

$$\forall m \in \mathbb{N}, \sum_{\lambda \in \operatorname{Sp} A \cup \operatorname{Sp} B} a_{\lambda} \lambda^{m} = 0$$

avec $a_{\lambda} = m_{\lambda}(A) - m_{\lambda}(B)$.

Indexons alors les valeurs propres de A et B de sorte que

$$\operatorname{Sp} A \cup \operatorname{Sp} B = \{\alpha_1, \dots, \alpha_r\}$$

avec $\alpha_1, \ldots, \alpha_r$ deux à deux distinctes. On obtient donc

$$\forall m \in \mathbb{N}, \sum_{j=1}^{r} a_{\alpha_j} \alpha_j^m = 0$$

Considérons alors la matrice carrée de Vandermonde

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_r \\ \vdots & \vdots & & \vdots \\ \alpha_1^{r-1} & \alpha_2^{r-1} & \cdots & \alpha_r^{r-1} \end{pmatrix}$$

Celle-ci est inversible car les α_1,\dots,α_r sont deux à deux distincts. Or les égalités qui précèdent donnent

$$\sum_{j=1}^{r} a_{\alpha_j} C_j = 0$$

en notant C_j les colonnes de la matrice de Vandermonde précédente. On en déduit

$$\forall 1 \leqslant j \leqslant r, a_{\alpha_i} = 0$$

ce qui donne

$$\forall \lambda \in \operatorname{Sp} A \cup \operatorname{Sp} B, m_{\lambda}(A) = m_{\lambda}(B)$$

Exercice 185 : [énoncé]

- a) Poser le produit par blocs.
- b) Si A et B sont inversibles alors $(A \star B)(A^{-1} \star B^{-1}) = I_n \star I_n = I_{n^2}$ donc $A \star B$ est inversible.
- Si A n'est pas inversible alors il existe $A' \neq 0$ tel que $AA' = O_n$ et alors
- $(A \star B)(A' \star I_n) = 0$ avec $A' \star I_n \neq 0$ donc $A \star B$ n'est pas inversible.

Un raisonnement semblable s'applique dans le cas où B n'est pas inversible.

c) Il existe P,Q matrices inversibles telles que

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & \star \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \text{ et } Q^{-1}BQ = \begin{pmatrix} \mu_1 & & \star \\ & \ddots & \\ 0 & & \mu_n \end{pmatrix}$$

avec λ_i et μ_i les valeurs propres de A et B.

On observe alors que $(P^{-1} \star Q^{-1})(A \star B)(P \star Q) = (P^{-1}AP) \star (Q^{-1}BQ)$ est triangulaire supérieure de coefficients diagonaux $\lambda_i \mu_j$. Les valeurs propres de $A \star B$ sont les produits des valeurs propres de A et B.

d) On note que $P^{-1}\star Q^{-1}=(P\star Q)^{-1}$ de sorte que $A\star B$ est semblable à la matrice triangulaire précédente et donc

$$\chi_{A\star B} = \prod_{i=1}^{n} \prod_{j=1}^{n} (X - \lambda_i \mu_j)$$

On en déduit

$$\det(A \star B) = (\det A \det B)^n$$

et la relation

$$\operatorname{tr}(A \star B) = \operatorname{tr}(A)\operatorname{tr}(B)$$

est immédiate par un calcul direct.

Exercice 186 : [énoncé]

La matrice A est trigonalisable semblable à

$$T = \begin{pmatrix} \lambda_1 & & \star \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix}$$

avec $\lambda_1, \dots, \lambda_n$ les valeurs propres de A comptées avec multiplicité. La matrice A^k est alors semblable à

$$T^k = \begin{pmatrix} \lambda_1^k & & \star \\ & \ddots & \\ (0) & & \lambda_n^k \end{pmatrix}$$

et ses valeurs propres sont les $\lambda_1^k, \ldots, \lambda_n^k$ comptées avec multiplicité.

Exercice 187: [énoncé]

La famille $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ constitue une base de E. oit $v \in \mathcal{L}(E)$ commutant avec u. On peut écrire

$$v(x_0) = a_0 x_0 + a_1 u(x_0) + \dots + a_{n-1} u^{n-1}(x_0)$$

Considérons alors

$$w = a_0 \text{Id} + a_1 u + \dots + a_{n-1} u^{n-1} \in \mathbb{K}[u]$$

On a

$$v(x_0) = w(x_0)$$

et puisque v et w commutent avec u, on a aussi

$$v(u^k(x_0)) = w(u^k(x_0))$$

Les endomorphismes v et w prennent même valeurs sur une base, ils sont donc égaux.

En conclusion $v \in \mathbb{K}[u]$.

Exercice 188: [énoncé]

On peut écrire

$$AB = P(A) = \alpha_n A^n + \dots + \alpha_1 A + I_n$$

donc

$$A\left(B - (\alpha_n A^{n-1} + \dots + \alpha_1 I_n)\right) = I_n$$

Par le théorème d'inversibilité, A est inversible et

$$A^{-1} = B - (\alpha_n A^{n-1} + \dots + \alpha_1 I_n).$$

Puisque A commute avec A^{-1} et ses puissances, on en déduit que A commute avec

$$B = A^{-1} + \alpha_n A^{n-1} + \dots + \alpha_1 I$$

Exercice 189 : [énoncé]

Le polynôme P s'écrit

$$P(X) = P(0) + a_1 X + \dots + a_p X^p$$

L'égalité AB = P(A) donne alors

$$A(B - (a_1I_n + a_2A + \dots + a_pA^{p-1})) = P(0)I_n$$

On en déduit que A est inversible et son inverse est

$$A^{-1} = \frac{1}{P(0)} \left(B - \left(a_1 I_n + a_2 A + \dots + a_p A^{p-1} \right) \right)$$

l'égalité $A^{-1}A = I_n$ donne alors

$$BA = P(A)$$

et on peut conclure que A et B commutent.

Exercice 190: [énoncé]

On sait qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = O_n$.

En introduisant les coefficients de P, la relation B = AP(A) donne

$$B = A + a_2 A^2 + \dots + a_{p-1} A^{p-1}$$

On en déduit

$$B^2 = A^2 + a_{3,2}A^3 + \dots + a_{p-1,2}A^{p-1}, \dots, B^{p-2} = A^{p-2} + a_{p-1,p-2}A^{p-1}, B^{p-1} = A^{p-1}$$

En inversant ces équations, on obtient

$$A^{p-1} = B^{p-1}, A^{p-2} = B^{p-2} + b_{p-1,p-2}A^{p-1}, \dots, A^2 = B^2 + b_{3,2}B^3 + \dots + b_{p-1,2}B^{p-1}$$

et enfin

$$A = B + b_{2.1}B^2 + \dots + b_{p-1.1}B^{p-1}$$

ce qui détermine un polynôme $Q \in \mathbb{R}[X]$ vérifiant Q(0) = 1 et A = BQ(B).

Exercice 191: [énoncé]

a) Posons $N = -A^{-1}BA$. On a

$$N^p = (-1)^p A^{-1} B^p A = O_n$$

donc

$$I_n = I_n - N^p = (I - N)(I + N + N^2 + \dots + N^{p-1})$$

On en déduit que $I - N = I_n + A^{-1}BA$ est inversible et

$$(I_n + A^{-1}BA)^{-1} = I + N + N^2 + \dots + N^{p-1}$$

b) Soit $P \in \mathbb{C}[X]$ tel que P(0) = 0. On a

$$P(X) = aX + bX^2 + \cdots$$

Donc

$$P(B) = aB + bB^2 + \cdots$$

puis

$$P(B)^p = a^p B^p + b' B^{p+1} + \dots = O_n$$

On peut alors reprendre le raisonnement de la question précédente et affirmer que la matrice $I_n + P(B)$ est inversible et que son inverse est de la forme

$$I_n - P(B) + P(B)^2 + \dots + (-1)^p P(B)^p$$

On en déduit que H est inclus dans $\mathrm{GL}_n(\mathbb{C})$ et que l'inverse d'un élément de H est encore dans H.

Il est immédiat de vérifier que H est non vide et stable par produit. On en déduit que H est un sous-groupe de $(GL_n(\mathbb{C}), \times)$. Enfin, on vérifie que H est commutatif car les polynômes en une matrice commutent entre eux.

Exercice 192 : [énoncé]

Par la formule de Taylor en a

$$P(X) = \sum_{k=0}^{+\infty} \frac{P^{(k)}(a)}{k!} (X - a)^k$$

donc

$$P(aI_n + J) = \sum_{k=0}^{+\infty} \frac{P^{(k)}(a)}{k!} J^k$$

Il est facile de calculer les puissances de J et l'on conclut

$$P(aI_n + J) = \begin{pmatrix} P(a) & P'(a) & \frac{P''(a)}{2!} & \cdots & \frac{P^{(n-1)}(a)}{(n-1)!} \\ & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & \frac{P''(a)}{2!} \\ & & & \ddots & P'(a) \\ (0) & & & & P(a) \end{pmatrix}$$

Exercice 193 : [énoncé]

Le polynôme $X^3 - 1 = (X - 1)(X^2 + X + 1)$ est annulateur de u avec les facteurs X - 1 et $X^2 + X + 1$ premiers entre eux, il suffit alors d'appliquer le lemme des noyaux pour conclure!

Exercice 194 : [énoncé]

 $P=X(X^2-3aX+a^2)$ est annulateur de f donc par le théorème de décomposition des noyaux, $E=\ker f\oplus\ker(f^2-3af+a^2\mathrm{Id})$ car X et $X^2-3aX+a^2$ sont premiers entre eux. Or a étant non nul, on montre élémentairement $\ker(f^2-3af+a^2\mathrm{Id})\subset\mathrm{Im}f$ tandis que l'inclusion réciproque provient de ce que $(f^2-3af+a^2\mathrm{Id})\circ f=0$. Il est donc vrai que $\ker f$ et $\mathrm{Im}f$ sont supplémentaires.

Exercice 195: [énoncé]

Par le lemme de décomposition des noyaux

$$\ker P(u) = \ker Q(u) \oplus \ker R(u)$$

et puisque P est annulateur

$$E = \ker Q(u) \oplus \ker R(u)$$

De plus $R(u) \circ Q(u) = \tilde{0}$ et donc $\text{Im}Q(u) \subset \ker R(u)$. Par la formule du rang

$$\dim \operatorname{Im} Q(u) = \dim E - \dim \ker Q(u)$$

et par la supplémentarité qui précède

$$\dim E = \dim \ker Q(u) + \dim \ker R(u)$$

donc

$$\dim \operatorname{Im} Q(u) = \dim \ker R(u)$$

et l'on peut conclure.

Exercice 196 : [énoncé]

Les vecteurs de (Id, u, \ldots, u^p) évoluent dans $\mathcal{L}(E)$ qui est de dimension n^2 . Pour $p = n^2$ la famille est assurément liée. Une relation linéaire donne alors immédiatement un polynôme annulateur non nul.

Exercice 197 : [énoncé]

On a
$$P(M) = \begin{pmatrix} P(A) & \star \\ O & P(B) \end{pmatrix} = \begin{pmatrix} O & \star \\ O & \star \end{pmatrix}$$
 et
$$Q(M) = \begin{pmatrix} Q(A) & \star \\ O & Q(B) \end{pmatrix} = \begin{pmatrix} \star & \star \\ O & O \end{pmatrix}$$
 donc $(PQ)(M) = P(M)Q(M) = \begin{pmatrix} O & \star \\ O & \star \end{pmatrix} \begin{pmatrix} \star & \star \\ O & O \end{pmatrix} = O_n$. Ainsi le polynôme PQ est annulateur de M .

Exercice 198 : [énoncé]

 $u \circ (u - \operatorname{Id}) \circ (u + \operatorname{Id})$ s'annule sur $\ker(u \circ (u - \operatorname{Id}))$ et sur $\ker(u \circ (u + \operatorname{Id}))$ donc sur $\ker(u \circ (u - \operatorname{Id})) + \ker(u \circ (u - \operatorname{Id})) = E$ et ainsi $u \circ (u^2 - \operatorname{Id}) = 0$. Si $x \in \ker u$ alors $x \in \ker(u \circ (u - \operatorname{Id})) \cap \ker(u \circ (u + \operatorname{Id})) = \{0\}$ donc $\ker u = \{0\}$ et $u \in \operatorname{GL}(E)$.

Par suite $u^2 - \text{Id} = u^{-1} \circ u \circ (u^2 - \text{Id}) = 0$ et donc $u^2 = \text{Id}$. Ainsi u est une symétrie vectorielle.

Exercice 199: [énoncé]

Quitte à considérer λP avec $\lambda \in \mathbb{K}^*$ bien choisi, on peut supposer

$$P(0) = 0$$
 et $P'(0) = 1$

ce qui permet d'écrire

$$P(X) = X + X^2 Q(X)$$
 avec $Q \in \mathbb{K}[X]$

Soit $x \in \text{Im } f \cap \ker f$. Il existe $a \in E$ tel que x = f(a) et on a f(x) = 0. On en déduit $f^2(a) = 0$. Or P(f)(a) = 0 et

$$P(f)(a) = f(a) + Q(f)(f^{2}(a)) = f(a) = x$$

Ainsi

$$\operatorname{Im} f \cap \ker f = \{0\}$$

Soit $x \in E$.

Analyse:

Supposons x = u + v avec $u = f(a) \in \text{Im} f$ et $v \in \text{ker } f$.

On a

$$f(x) = f^2(a) + f(v) = f^2(a)$$

Or

$$P(f)(x) = f(x) + f^{2}(Q(f)(x)) = 0$$

donc

$$f(x) = f^2 \left(-Q(f)(x) \right)$$

Synthèse:

Posons u = -f(Q(f)(x)) et v = x - u.

On a immédiatement $u \in \text{Im } f$ et x = u + v.

On a aussi

$$f(v) = f(x) - f(u) = f(x) + f^{2}(Q(f)(x)) = P(f)(x) = 0$$

et donc $v \in \ker f$.

Exercice 200 : [énoncé]

On sait déjà $\ker u \subset \ker u^2$.

Inversement, soit $x \in \ker u^2$.

Notons P le polynôme annulateur en question. On peut écrire

$$P(X) = aX + X^2Q(X)$$
 avec $a \neq 0$ et $Q \in \mathbb{K}[X]$

L'égalité P(u)(x) = 0 donne

$$au(x) + Q(u)(u^2(x)) = 0$$

et donc u(x) = 0 car $a \neq 0$ et $u^2(x) = 0$.

Ainsi $x \in \ker u$ et on peut conclure.

Exercice 201 : [énoncé]

a) On sait déjà $\ker u \subset \ker u^2$. On a P = XQ avec $Q(0) \neq 0$. Pour $x \in \ker u^2$, on a $u^2(x) = 0$ et Q(u)(u(x)) = 0 donc $u(x) \in \ker u \cap \ker Q(u)$ puis u(x) = 0 car $Q(0) \neq 0$. On en déduit $\ker u^2 \subset \ker u$ puis l'égalité.

L'inclusion $\text{Im}u^2 \subset \text{Im}u$ est entendue.

Inversement, soit $x \in \text{Im} u$. On peut écrire x = u(a) pour un certain $a \in E$. Or P(u)(a) = 0 et l'on peut écrire P sous la forme

$$P(X) = a_n X^n + \dots + a_1 X$$
 avec $a_1 \neq 0$

donc

$$a_1u(a) \in \mathrm{Im}u^2$$

puis $x \in \text{Im}u^2$.

Ainsi $Imu^2 = Imu$

b) Pour $x \in \ker u \cap \operatorname{Im} u$, il existe $a \in E$, x = u(a) et $a \in \ker u^2 = \ker u$ donc x = 0. Pour $x \in E$, $u(x) \in \operatorname{Im} u = \operatorname{Im} u^2$ et on peut écrire $u(x) = u^2(a)$ pour un certain $a \in E$. On a alors x = y + z avec $y = u(a) \in \operatorname{Im} u$ et z = x - y où l'on vérifie $z \in \ker u$.

Exercice 202 : [énoncé]

Puisque u possède un polynôme annulateur, on a

$$\dim \mathbb{K}[u] < +\infty$$

Or $\mathbb{K}[Q(u)] \subset \mathbb{K}[u]$ donc

$$\dim \mathbb{K}\left[Q(u)\right] < +\infty$$

et par conséquent Q(u) possède un polynôme annulateur.

Exercice 203 : [énoncé]

Si P et Π_u sont premiers entre eux alors par l'égalité de Bézout, il existe $U, V \in \mathbb{K}[X]$ tels que $UP + V\Pi_u = 1$ donc $U(u)P(u) = \mathrm{Id}_E$. Aussi $P(u)U(u) = \mathrm{Id}_E$ donc P(u) est inversible et $P(u)^{-1} = U(u) \in \mathbb{K}[u]$. Si P et Π_u ne sont pas premiers entre eux alors on peut écrire $\Pi_u = QD$ avec D le pgcd de P et Π_u . On a $\Pi_u \mid PQ$ donc P(u)Q(u) = 0 alors que $Q(u) \neq 0$ puisque deg $Q < \deg \Pi_u$. Par suite P(u) n'est pas inversible.

Exercice 204: [énoncé]

 Π_u annule u donc aussi u_F et ainsi $\Pi_{u_F} \mid \Pi_u$. De même $\Pi_{u_G} \mid \Pi_u$ donc ppcm $(\Pi_{u_F}, \Pi_{u_G}) \mid \Pi_u$.

Inversement si $P = \operatorname{ppcm}(\Pi_{u_F}, \Pi_{u_G})$ alors $\forall x \in F$, P(u)(x) = 0 et $\forall x \in G$, P(u)(x) = 0 donc $\forall x \in E = F \oplus G$, P(u)(x) = 0 donc P annule u puis $\Pi_u \mid P$.

Exercice 205: [énoncé]

 Π_u annule u donc aussi u_F puis la conclusion.

Exercice 206: [énoncé]

Considérons $B = A - I_n$. On a $B^2 = O_n$.

Soit u l'endomorphisme de \mathbb{K}^n dont la matrice est B dans la base canonique. On a $u^2 = \tilde{0}$ donc $\operatorname{Im} u \subset \ker u$.

Soit (e_1, \ldots, e_p) une base de Imu complétée en $(e_1, \ldots, e_p, e_{p+1}, \ldots, e_q)$ base de $\ker u$.

Pour tout $j \in \{1, ..., p\}$, considérons $\varepsilon_j \in E$ tel que $u(\varepsilon_j) = e_j$.

Supposons $\lambda_1 \varepsilon_1 + \dots + \lambda_p \varepsilon_p + \mu_1 e_1 + \dots + \mu_q e_q = 0$.

On appliquant u à cette relation, on obtient $\lambda_1 e_1 + \cdots + \lambda_p e_p = 0$ donc $\lambda_1 = \ldots = \lambda_p = 0$.

La relation initiale devient $\mu_1 e_1 + \cdots + \mu_q e_q = 0$ qui entraı̂ne $\mu_1 = \ldots = \mu_q = 0$. Finalement la famille $(\varepsilon_1, \ldots, \varepsilon_p, e_1, \ldots, e_q)$ est libre et puisque formée de $p + q = \dim \operatorname{Im} u + \dim \ker u = n$ vecteurs de E, c'est une base de E.

La matrice de u dans la base $(e_1, \varepsilon_1, \dots, e_p, \varepsilon_p, e_{p+1}, \dots, e_q)$ a alors ses coefficients tous nuls sauf p coefficients sur la sur-diagonale.

La matrice B est donc semblable à la matrice précédente et $A = I_n + B$ est semblable à une matrice de la forme voulue.

Exercice 207 : [énoncé]

Supposons n est impair. Le polynôme caractéristique d'une matrice de $\mathcal{M}_n(\mathbb{R})$

étant de degré impair possèdera une racine qui sera valeur propre de la matrice et aussi racine de son polynôme minimal. Celui-ci ne peut alors être le polynôme $X^2 + 1$.

Supposons n est pair. Considérons

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 et $A_n = \operatorname{diag}(A, \dots, A) \in \mathcal{M}_n(\mathbb{R})$

 A_n n'est pas une homothétie donc le degré de son polynôme minimal est supérieur à 2.

De plus $A_n^2 = -I_n$ donc $X^2 + 1$ annule A_n .

Au final, $X^2 + 1$ est polynôme minimal de A_n .

Exercice 208: [énoncé]

 $A = PDP^{-1}$ avec D = diag(a + b, ..., a + b, a - b, ..., a - b) et

$$P = \begin{pmatrix} 1 & (0) & 0 & 1 & (0) \\ & \ddots & & \vdots & & \ddots & \\ & & 1 & 0 & (0) & & 1 \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ (0) & & 1 & 0 & (0) & & -1 \\ & & \ddots & & \vdots & & \ddots & \\ 1 & & (0) & 0 & -1 & & (0) \end{pmatrix}$$

Par suite

$$\pi_A = (X - (a+b))(X - (a-b))$$

et les polynômes annulateurs de A sont les multiples de π_A .

Exercice 209 : [énoncé]

On peut écrire

$$\Pi_f = \prod_{\lambda \in \mathrm{Sp}(f)} (X - \lambda)^{\alpha_{\lambda}}$$

 $_{
m et}$

$$E = \bigoplus_{\lambda \in \operatorname{Sp}(f)} \ker(f - \lambda \operatorname{Id})^{\alpha_{\lambda}}$$

décomposition en somme de sous-espaces vectoriels stables par f. Pour chaque $\lambda \in \operatorname{Sp}(f)$,

$$\ker(f - \lambda \operatorname{Id})^{\alpha_{\lambda} - 1} \neq \ker(f - \lambda \operatorname{Id})^{\alpha_{\lambda}}$$

par minimalité de Π_f et donc il existe $x_{\lambda} \in \ker(f - \lambda \operatorname{Id})^{\alpha_{\lambda}} \setminus \ker(f - \lambda \operatorname{Id})^{\alpha_{\lambda}-1}$. On peut alors établir que la famille $((f - \lambda \operatorname{Id})^k(x_\lambda))_{0 \le k \le \alpha_\lambda - 1}$ est libre.

Considérons maintenant $x = \sum_{\lambda \in \operatorname{Sp}(f)} x_{\lambda}$. Pour $P \in \mathbb{C}[X]$, $P(f)(x) = \sum_{\lambda \in \operatorname{Sp}(f)} P(f)(x_{\lambda})$ avec $P(f)(x_{\lambda}) \in \ker(f - \lambda \operatorname{Id})^{\alpha_{\lambda}}$ par

stabilité.

Par décomposition en somme directe.

$$P(f)(x) = 0 \Leftrightarrow \forall \lambda \in \operatorname{Sp}(f), P(f)(x_{\lambda}) = 0$$

Par division euclidienne $P = (X - \lambda)^{\alpha_{\lambda}}Q + R$ avec deg $R < \alpha_{\lambda}$ de sorte qu'on puisse écrire $R = \sum_{k=0}^{\alpha_{\lambda}-1} a_k (X - \lambda)^k$. On alors

$$P(f)(x_{\lambda}) = 0 \Leftrightarrow \forall 0 \leqslant k < \alpha_{\lambda}, a_{k} = 0$$

Ainsi

$$P(f)(x) = 0 \Leftrightarrow \forall \lambda \in \operatorname{Sp}(f), (X - \lambda)^{\alpha_{\lambda}} \mid P$$

Enfin puisque les termes $(X - \lambda)^{\alpha_{\lambda}}$ sont premiers entre eux, on peut conclure

$$P(f)(x) = 0 \Leftrightarrow \Pi_f \mid P$$

Exercice 210 : [énoncé]

a) Si $\ker(u - \lambda \operatorname{Id}) = \{0\}$ alors $\operatorname{Im}(u - \lambda \operatorname{Id}) = E \operatorname{car} u - \lambda \operatorname{Id}$ est inversible. On en déduit que λ est séparable.

Par contraposée, si λ n'est pas séparable alors λ est valeur propre de u.

b) Si u est un endomorphisme diagonalisable alors pour tout scalaire λ , $\ker(u - \lambda \operatorname{Id}) = \ker(u - \lambda \operatorname{Id})^2$.

Par suite $\operatorname{Im}(u - \lambda \operatorname{Id}) \cap \ker(u - \lambda \operatorname{Id}) = \{0\}$ et on en déduit que λ est séparable. Inversement, soit u un endomorphisme scindé dont toutes les valeurs propres sont séparables.

Puisque le polynôme caractéristique de u est scindé, on peut écrire

$$\chi_u = (-1)^{\dim E} \prod_{\lambda \in \operatorname{Sp}u} (X - \lambda)^{m_{\lambda}}$$

et par le lemme de décomposition des novaux

$$E = \bigoplus_{\lambda \in \operatorname{Sp}u} \ker(u - \lambda \operatorname{Id})^{m_{\lambda}}$$

Or, pour toute valeur propre λ , $\operatorname{Im}(u - \lambda \operatorname{Id}) \cap \ker(u - \lambda \operatorname{Id}) = \{0\}$ entraîne $\ker(u - \lambda \operatorname{Id}) = \ker(u - \lambda \operatorname{Id})^2$ puis par le principe des noyaux itérés $\ker(u - \lambda \operatorname{Id}) = \ker(u - \lambda \operatorname{Id})^{m_{\lambda}}$. Par suite

$$E = \bigoplus_{\lambda \in \operatorname{Sp}u} \ker(u - \lambda \operatorname{Id})$$

et donc u est diagonalisable

c) Soit λ une valeur propre de u. Le polynôme minimal de u peut s'écrire

$$\pi_u = (X - \lambda)^{\alpha} Q \text{ avec } Q(\lambda) \neq 0$$

 $\pi_u(u) = 0$ donne

$$\operatorname{Im} Q(u) \subset \ker(u - \lambda \operatorname{Id})^{\alpha}$$

Si λ est une valeur propre séparable alors $\ker(u - \lambda \mathrm{Id}) = \ker(u - \lambda \mathrm{Id})^{\alpha}$ et donc

$$\operatorname{Im}Q(u) \subset \ker(u - \lambda \operatorname{Id})$$

puis le polynôme $(X - \lambda)Q$ annule u. Par minimalité de π_u , on conclut $\alpha = 1$. Inversement, si λ est une racine simple du polynôme minimal, alors

$$\pi_u = (X - \lambda)Q \text{ avec } Q(\lambda) \neq 0$$

Puisque les polynômes Q et $X-\lambda$ sont premiers entre eux, on peut écrire

$$QU + (X - \lambda)V = 1 \text{ avec } U, V \in \mathbb{K}[X]$$

et en évaluant

$$Q(u)U(u)(x) + (u - \lambda \operatorname{Id})V(u)(x) = x$$

avec $Q(u)U(u)(x) \in \ker(u - \lambda \operatorname{Id})$ (car π_u est annulateur) et $(u - \lambda \operatorname{Id})V(u)(x) \in \operatorname{Im}(u - \lambda \operatorname{Id})$.

Ainsi λ est une valeur propre séparable.

Finalement les scalaires non séparables sont les racines multiples de π_u . d) $m(v) = u \circ v$, $m^2(v) = u^2 \circ v$,... $P(m)(v) = P(u) \circ v$ pour tout polynôme P. Par suite les endomorphismes m et u ont les mêmes polynômes annulateurs et donc le même polynôme minimal. Puisque les scalaires non séparables sont les racines multiples du polynôme minimal, les endomorphismes u et m ont les mêmes valeurs séparables.

Exercice 211 : [énoncé]

Soit x vecteur propre associé à la valeur propre λ . $P(f)(x) = P(\lambda)x$ or P(f) = 0 et $x \neq 0$ donc $P(\lambda) = 0$.

Exercice 212: [énoncé]

- a) Soit x un vecteur propre associé à la valeur propre λ . On a $f(x) = \lambda x$ avec $x \neq 0_E$. Par composition $f^n(x) = \lambda^n x$ puis $P(f)(x) = P(\lambda)x$. Or $P(f)(x) = 0_E$ et $x \neq 0_E$ donc $P(\lambda) = 0$.
- b) Le polynôme X^3+2X^2-X-2 est annulateur de f et 0 n'en est pas racine donc $0 \notin \operatorname{Sp} f$. Cela suffit pour conclure si l'espace est de dimension finie. Sinon, on exploite

$$f \circ \left[\frac{1}{2}(f^2 + 2f - \operatorname{Id})\right] = \left[\frac{1}{2}(f^2 + 2f - \operatorname{Id})\right] \circ f = \operatorname{Id}$$

pour conclure.

Exercice 213 : [énoncé]

 $\varphi^2 = \text{Id donc } X^2 - 1$ est annulateur de φ . Les valeurs propres de φ ne peuvent être que 1 et -1. En prenant pour f une fonction paire et une fonction impaire non nulle, on montre que 1 et -1 sont effectivement valeurs propres de φ .

Exercice 214: [énoncé]

- a) On vérifier $T^2 = \text{Id donc } T$ est un automorphisme et $T^{-1} = T$.
- b) Puisque T annule X^2-1 , $\operatorname{Sp} T\subset\{1,-1\}$ puis égale car par exemple 1 est vecteur propre associé à la valeur propre 1 et X-1/2 est vecteur propre associé à la valeur propre -1.

Exercice 215 : [énoncé]

Les valeurs propres de u sont racines des polynômes annulateurs donc du polynôme minimal.

Soit a une racine de Π_u . On a

$$\Pi_u = (X - a)P$$
 et $P(u) \neq 0$

car P ne peut être annulateur de u.

Pour $y \in \text{Im}(P(u)) \setminus \{0_E\}$, il existe $x \in E$, y = P(u)(x) et $\Pi(u)(x) = 0_E$ donc $(u - a \text{Id})(y) = 0_E$ avec $y \neq 0_E$.

Ainsi a est valeur propre de u (et y est vecteur propre associé).

Exercice 216: [énoncé]

 $\chi_A = X^2 - (a+d)X + (ad-bc)$ annule matrice A.

On en déduit

$$A^{-1} = \frac{1}{ad - bc}((a+d)I_2 - A)$$

Exercice 217: [énoncé]

 $\chi_A = (X - \lambda_1) \dots (X - \lambda_n)$ annule A en vertu du théorème de Cayley Hamilton.

Exercice 218: [énoncé]

Par Sarrus

$$\chi_A = X(X^2 + (a^2 + b^2 + c^2))$$

- a) Si $(a, b, c) \neq (0, 0, 0)$ alors $a^2 + b^2 + c^2 > 0$ et la matrice A n'est pas diagonalisable sur \mathbb{R} car son polynôme caractéristique n'est pas scindé.
- Si (a, b, c) = (0, 0, 0) alors A est la matrice nulle.
- b) Si $(a, b, c) \neq (0, 0, 0)$ alors la matrice A diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ car possède trois valeurs propres distinctes à savoir 0 et $\pm i\sqrt{a^2 + b^2 + c^2}$.
- Si (a, b, c) = (0, 0, 0) alors A est la matrice nulle.
- c) Puisque 0 est la seule valeur propre réelle de A et puisque B est inversible si, et seulement si, $-\lambda$ est valeur propre de A, on peut conclure que B est inversible pour tout $\lambda \neq 0$.
- d) Puisque le polynôme caractéristique est annulateur de A on a

$$A^3 + (a^2 + b^2 + c^2)A = O_3$$

donc

$$(B - \lambda I_3)^3 + (a^2 + b^2 + c^2)(B - \lambda I_3) = O_3$$

Il suffit de développer et de réorganiser pour obtenir une expression du type

$$B(uB^2 + vB + wI_3) = I_3$$

et conclure

$$B^{-1} = uB^2 + vB + wI_3 = \alpha A^2 + \beta A + \gamma I_3$$

Exercice 219: [énoncé]

Considérons le polynôme caractéristique de u:

$$\chi_u = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0 \text{ avec } a_0 = (-1)^n \det u \neq 0$$

Puisque $\chi_u(u) = \tilde{0}$, on obtient

$$u^{n} + a_{n-1}u^{n-1} + \dots + a_{1}u + a_{0}\mathrm{Id} = \tilde{0}$$

Par suite

$$u^n + a_{n-1}u^{n-1} + \dots + a_1u = -a_0 \text{Id}$$

En composant avec u^{-1} à gauche on obtient

$$u^{n-1} + a_{n-1}u^{n-2} + \dots + a_1 \mathrm{Id} = -a_0 u^{-1}$$

et on en déduit

$$u^{-1} = -\frac{1}{a_0} \left(u^{n-1} + a_{n-1} u^{n-2} + \dots + a_1 \mathrm{Id}_E \right) \in \mathbb{K} \left[u \right]$$

Exercice 220: [énoncé]

- a) Si f est diagonalisable alors f est représenté par λI_n dans une certaine base et donc f est une homothétie vectorielle. La réciproque est immédiate.
- b) Calculé dans une base de triangulation, $\chi_f(x) = (x \lambda)^n$.
- c) χ_f est annulateur de f dans $(f \lambda \operatorname{Id})^n = \tilde{0}$.

Exercice 221: [énoncé]

a) Le polynôme caractéristique de f est un polynôme de degré n annulant f. Ainsi $f^n \in \text{Vect}(\text{Id}, f, \dots, f^{n-1})$. Par récurrence, on montre alors que pour tout $m \geqslant n, f^m \in \text{Vect}(\text{Id}, f, \dots, f^{n-1})$.

Par suite $f^n(x), \ldots, f^{N-1}(x) \in \text{Vect}(x, f(x), \ldots, f^{n-1}(x))$ puis $E = \text{Vect}(x, f(x), \ldots, f^{N-1}(x))$ donne $E = \text{Vect}(x, f(x), \ldots, f^{n-1}(x))$. La famille $(x, f(x), \ldots, f^{n-1}(x))$ est alors génératrice et formée de $n = \dim E$ vecteurs de E, c'est donc une base de E.

b) Les polynômes en f commute avec f.

Inversement, supposons que $g \in \mathcal{L}(E)$ commute avec f. Puisque $g(x) \in E$, on peut écrire $g(x) = a_0x + a_1f(x) + \cdots + a_{n-1}f^{n-1}(x)$.

Puisque f et g commute, on a encore

 $g(f^k(x)) = a_0 f^k(x) + a_1 f^{k+1}(x) + \dots + a_{n-1} f^{n+k-1}(x)$ de sorte que les endomorphismes g et $a_0 \operatorname{Id} + a_1 f + \dots + a_{n-1} f^{n-1}$ coïncident sur une base de E et c'est donc égaux. Au final f est un polynôme en f.

Exercice 222 : [énoncé]

- a) $A^2M=AMB=MB^2$ et ainsi de suite : $A^pM=MB^p$ pour tout $p\in\mathbb{N}$. Par linéarité P(A)M=MP(B).
- b) Considérons $P = \chi_A$. La relation P(A)M = MP(B) entraı̂ne $MP(B) = O_n$. Or $M \neq O_n$ donc la matrice P(B) n'est pas inversible. Par suite $\det(P(B)) = 0$. Or

$$P = \prod_{i=1}^{n} (X - \lambda_i)$$

avec λ_i valeur propre de A donc il existe $i \in \{1, \dots, n\}$ telle que

$$\det(\lambda_i I_n - B) = 0$$

Ainsi A et B ont une valeur propre commune.

Exercice 223: [énoncé]

Considérons $T: P(X) \mapsto P(X+1)$. T est un endomorphisme de $\mathbb{R}_{n-1}[X]$ qui est annulé par son polynôme caractéristique de la forme

$$\chi_T = X^n + \sum_{k=0}^{n-1} a_k X^k$$

Cela fournit directement la propriété voulue.

Exercice 224: [énoncé]

a) Par le théorème de Cayley Hamilton, on a

$$\chi_u(u) = \tilde{0}$$

avec χ_u polynôme de coefficient constant det $u \neq 0$. En écrivant

$$\chi_u(X) = XP(X) + \det u$$

le polynôme

$$Q(X) = -\frac{1}{\det u} P(X)$$

est solution.

b) Considérons l'endomorphisme v de $\mathbb{K}[X]$ qui envoie le polynôme P(X) sur P(X/2).

On vérifie aisément $u \circ v = v \circ u = \text{Id}$ ce qui permet d'affirmer que u est inversible d'inverse v.

Soit $P = a_n X^n + \cdots + a_1 X + a_0$ un polynôme de degré exactement n. Si $u(P) = \lambda P$ alors par identification des coefficients de degré n, on obtient

$$\lambda = 2^n$$

puis on en déduit

$$P = a_n X^n$$

La réciproque étant immédiate, on peut affirmer

$$\operatorname{Sp} u = \{2^n/n \in \mathbb{N}\} \text{ et } E_{2^n}(u) = \operatorname{Vect}(X^n)$$

Si par l'absurde il existe $Q \in \mathbb{K}[X]$ tel que

$$u^{-1} = Q(u)$$

alors le polynôme non nul

$$XQ(X)-1$$

est annulateur de u. Les valeurs propres de u sont alors racines de celui-ci ce qui donne une infinité de racines.

C'est absurde.

Exercice 225 : [énoncé]

L'implication directe est immédiate : elle découle de la stabilité par produit de l'espace des matrices triangulaires supérieures. Inversement, supposons A^k triangulaire supérieure pour tout $k\geqslant 2$. Introduisons le polynôme caractéristique de A

$$P(X) = a_n X^n + \dots + a_1 X + \det(A)$$

Puisque celui-ci est annulateur de A, on peut écrire

$$a_n A^n + \dots + a_1 A + \det(A) I_n = O_n$$

En multipliant la relation par A et en réorganisant

$$A = \frac{-1}{\det A}(a_1 A^2 + \dots + a_n A^{n+1})$$

et la matrice A est donc triangulaire supérieure.

Pour

$$A = \left(\begin{array}{cc} 1 & -1 \\ 1 & -1 \end{array}\right)$$

nous obtenons un contre-exemple où $A^k = O_2$ pour tout $k \ge 2$.

Exercice 226: [énoncé]

a) Si v est un endomorphisme, on a

$$\dim v^{-1}(F) \leq \dim F + \dim \ker v$$

Pour $k \in \mathbb{N}$,

$$\ker(u - \lambda_i \operatorname{Id}_E)^{k+1} = (u - \lambda_i \operatorname{Id}_E)^{-1} \left(\ker(u - \lambda_i \operatorname{Id}_E)^k \right)$$

donc

$$\dim \ker(u - \lambda_i \operatorname{Id}_E)^{k+1} \leq \ker(u - \lambda_i \operatorname{Id}_E)^k + 1$$

Ainsi, on obtient

$$\forall k \in \mathbb{N}, \dim \ker(u - \lambda_i \mathrm{Id}_E)^k \leqslant k$$

Le polynôme caractéristique de u est

$$\chi_u(X) = \prod_{i=1}^q (X - \lambda_i)^{n_i}$$

et celui-ci est annulateur de u. Par le lemme de décomposition des noyaux

$$E = \bigoplus_{i=1}^{q} \ker \left(u - \lambda_i \mathrm{Id}_E \right)^{n_i}$$

et donc

$$\dim E = \sum_{i=1}^{q} \dim \ker \left(u - \lambda_i \mathrm{Id}_E \right)^{n_i}$$

Or

$$\dim \ker (u - \lambda_i \operatorname{Id}_E)^{n_i} \leqslant n_i$$

et

$$\dim E = \deg \chi_u = \sum_{i=1}^q n_i$$

donc

$$\forall 1 \leqslant i \leqslant q, \dim \ker (u - \lambda_i \mathrm{Id}_E)^{n_i} = n_i$$

Enfin, par l'étude initiale

$$\forall 1 \leqslant i \leqslant q, \forall 0 \leqslant m \leqslant n_i \dim \ker (u - \lambda_i \operatorname{Id}_E)^m = m$$

b) Si F est un sous-espace vectoriel stable par u, le polynôme caractéristique Q de u_F annule u_F et divise χ_u . On obtient ainsi un polynôme Q de la forme

$$Q(X) = \prod_{i=1}^{q} (X - \lambda_i)^{m_i} \text{ avec } m_i \leqslant n_i$$

vérifiant

$$F \subset \ker Q(u)$$

Or, par le lemme de décomposition des noyaux

$$\ker Q(u) = \bigoplus_{i=1}^{q} \ker(u - \lambda_i \operatorname{Id}_E)^{m_i}$$

puis, en vertu du résultat précédent

$$\dim \ker Q(u) = \sum_{i=1}^{q} m_i = \deg Q = \dim F$$

Par inclusion et égalité des dimensions

$$\ker Q(u) = F$$

c) On reprend les notations qui précèdent

$$F = \bigoplus_{i=1}^{q} \ker(u - \lambda_i \mathrm{Id}_E)^{m_i}$$

On peut alors faire correspondre à F le tuple (m_1, \ldots, m_q) . Cette correspondance est bien définie et bijective car

$$\ker(u - \lambda_i \mathrm{Id}_E)^{m_i} \subset \ker(u - \lambda_i \mathrm{Id}_E)^{n_i}, E = \bigoplus_{i=1}^q \ker(u - \lambda_i \mathrm{Id}_E)^{n_i}$$

 $_{
m et}$

$$\dim \ker (u - \lambda_i \mathrm{Id}_E)^{m_i} = mi$$

Il y a donc autant de sous-espaces vectoriels stables que de diviseurs unitaires de χ_u .

Exercice 227 : [énoncé]

Puisque les entiers $\det A$ et $\det B$ sont premiers entre eux, on peut écrire par l'égalité de Bézout

$$u. \det A + v. \det B = 1 \text{ avec } u, v \in \mathbb{Z}$$

On écrit $\chi_A(X) = XQ_A(X) + (-1)^n$ det A et de même $\chi_B(X)$ (ces écritures sont possibles car le déterminant est au signe près le coefficient constant d'un polynôme caractéristique).

Posons alors

$$U = (-1)^{n-1} u Q_A(A)$$
 et $V = (-1)^{n-1} v Q_B(B)$

Puisque χ_A et χ_B sont à coefficients entiers, on a $U, V \in \mathcal{M}_n(\mathbb{Z})$. Puisque χ_A et χ_B sont annulateurs, on a

$$Q_A(A)A = (-1)^{n-1} \det A.I_n \text{ et } Q_B(B)B = (-1)^{n-1} \det B.I_n$$

On observe alors

$$UA + VB = (u. \det A + v. \det B)I_n = I_n$$

Remarquons que prendre

$$U = u^t \operatorname{com} A \text{ et } V = v^t \operatorname{com} B$$

était sans doute plus simple...

Pour

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

les matrices

$$U = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \text{ et } V = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

conviennent...

Exercice 228 : [énoncé]

 $\mu_A \mid \chi_A = (X-1)^2$ mais A n'est pas diagonalisable, donc $\mu_A = (X-1)^2$.

Exercice 229 : [énoncé]

a) Notons $\alpha_1, \ldots, \alpha_n$ les composantes de x dans une base de diagonalisation \mathcal{B} de f. La matrice de la famille (x_1, \ldots, x_n) dans la base \mathcal{B} est

$$\begin{pmatrix} \alpha_1 \lambda_1 & \dots & \alpha_1 \lambda_1^n \\ \vdots & & \vdots \\ \alpha_n \lambda_n & \dots & \alpha_n \lambda_n^n \end{pmatrix}$$

avec $\lambda_1, \ldots, \lambda_n$ les valeurs propres de f comptées avec multiplicité. Cette matrice est de rang n, si, et seulement si,

$$\alpha_1, \dots, \alpha_n \neq 0 \text{ et} \begin{vmatrix} \lambda_1 & \dots & \lambda_1^n \\ \vdots & & \vdots \\ \lambda_n & \dots & \lambda_n^n \end{vmatrix} \neq 0$$

Par déterminant de Vandermonde, on peut assurer l'existence de x tel que voulu si, et seulement, si les valeurs propres de f sont deux à deux distincts et non nulles. N'importe quel x aux composantes toutes non nulles est alors convenable. b) Les polynômes en f commutent avec f.

Supposons que g soit un endomorphisme de E commutant avec f.

On peut écrire
$$g(x_1) = a_1x_1 + \cdots + a_nx_n = P(f)(x_1)$$
 avec

$$P = a_1 + a_2 X + \dots + a_{n-1} X^{n-1}.$$

On a alors

$$g(x_2) = g(f(x_1)) = f(g(x_1)) = f(P(f)(x_1)) = P(f)(f(x_1)) = P(f)(x_2).$$

Plus généralement, en exploitant $x_k = f^{k-1}(x_1)$, on obtient $g(x_k) = P(f)(x_k)$. Les endomorphismes g et P(f) coïncident sur les éléments d'une base, ils sont donc égaux. Finalement, le commutant de f est exactement formé des polynômes en f.

Si le polynôme minimal Π_f de f est de degré < n alors la famille $(\mathrm{Id}, f, \ldots, f^{n-1})$ est liée et alors pour tout $x \in E$, la famille $(x, f(x), \ldots, f^{n-1}(x))$ l'est aussi. Cela contredit l'hypothèse de départ. On peut donc affirmer que deg $\Pi_f \ge n$ et puisque $\Pi_f \mid \chi_f$, on a $\Pi_f = (-1)\chi_f$ avec χ_f polynôme caractéristique de f.

Exercice 230 : [énoncé]

A est symétrique donc diagonalisable.

$$\chi_A = (X - (a + (n-1)b)(X - (a-b))^{n-1}$$

$$\operatorname{Sp}(A) = \{a + (n-1)b, a-b\} \text{ (si } n \ge 2)$$

$$\pi_A = (X - (a + (n-1)b))(X - (a-b))$$

A est inversible si, et seulement si, $0 \notin \operatorname{Sp}(A)$ i.e. $a + (n-1)b \neq 0$ et $a \neq b$.

$$\begin{pmatrix} a & & (b) \\ & \ddots & \\ (b) & & a \end{pmatrix} \begin{pmatrix} x & & (y) \\ & \ddots & \\ (y) & & x \end{pmatrix} = \begin{pmatrix} \alpha & & (\beta) \\ & \ddots & \\ (\beta) & & \alpha \end{pmatrix}$$

avec

$$\begin{cases} \alpha = ax + (n-1)by \\ \beta = ay + bx + (n-2)by \end{cases}$$

Il suffit alors de résoudre le système

$$\begin{cases} ax + (n-1)by = 1\\ bx + (a+(n-2)b)y = 0 \end{cases}$$

pour expliciter A^{-1} .

Exercice 231 : [énoncé]

a) Il est clair que L est linéaire.

Si tr(M) = 0 alors L(M) = aM.

a est valeur propre de L et le sous-espace propre associé est l'hyperplan des matrices de trace nulle.

Si $\operatorname{tr}(M) \neq 0$ alors $L(M) = \lambda M$ implique $M \in \operatorname{Vect}(I_n)$. Or $L(I_n) = (a+n)I_n$ donc a+n est valeur propre de L et le sous-espace propre associé est la droite $\operatorname{Vect}(I_n)$.

L'endomorphisme L est donc diagonalisable et par suite

$$\Pi_L(X) = (X - a)(X - (a + n))$$

b) En dimension finie, L est un automorphisme si, et seulement si, $0 \notin \operatorname{Sp}(L)$ i.e. $a \neq 0, -n$.

Puisque

$$L^{2} - (2a+n)L + a(a+n)I = 0$$

on a

$$L^{-1} = \frac{1}{a(a+n)}(L - (2a+n)I)$$

et donc

$$L^{-1}(M) = \frac{1}{a(a+n)} (\operatorname{tr}(M)I_n - (a+n)M)$$

Exercice 232: [énoncé]

a) Il est immédiat que L est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

 $Sp(L) = \{a, a + n\}, E_a(L) = ker(tr) \text{ et } E_{a+n}(L) = Vect(I_n),$

 $\Pi_L = (X - a)(X - (a + n))$ car L est diagonalisable et donc son polynôme minimal est le polynôme simple dont les racines sont les valeurs propres de L.

b) Par une base de diagonalisation, $\det L = a^{n^2-1}(a+n)$ et donc L est un automorphisme si, et seulement si, $a \neq 0, -n$.

Par le polynôme minimal, on a $L^2 - (2a + n)L + a(a + n)Id = 0$ et donc

$$L^{-1} = \frac{1}{a(a+n)} ((2a+n)\mathrm{Id} - L)$$

Exercice 233: [énoncé]

 $A^2 = -I_{2n}$. On observe que $X^2 + 1$ est annulateur de A.

Si $\mathbb{K}=\mathbb{C}$ alors A est diagonalisable car annule le polynôme X^2+1 qui est scindé à racines simples.

Si $\mathbb{K} = \mathbb{R}$ alors A n'est pas diagonalisable car sans valeurs propres. En effet une valeur propre (réelle) de A doit être annulé par le polynôme $X^2 + 1$.

Exercice 234 : [énoncé]

a) $A^2 = -I_{2n}$.

b) $X^2+1=(X-i)(X+i)$ est annulateur de A et scindé simple donc A est diagonalisable. De plus A est réelle donc ses valeurs propres sont deux à deux conjuguées, deux valeurs propres conjuguées ont même multiplicité. Puisque les valeurs propres figurent parmi les racines de X^2+1 et que la matrice complexe A possède au moins une valeur propre, on peut affirmer que i et -i sont les deux seules valeurs propres de A, qu'elles sont de multiplicité n. Enfin les sous-espaces propres associés sont de dimension n car A est diagonalisable et donc les dimensions des sous-espaces propres égales la multiplicité des valeurs propres respectives.

Exercice 235 : [énoncé]

Soient $P \in M_n(\mathbb{K})$ une matrice de permutation et σ la permutation associée. Il existe $q \in \mathbb{N}^*$ tel que $\sigma^q = \text{Id}$ et donc $P^q = I_n$. La matrice P annule alors $X^q - 1$ qui est scindé à racines simples donc P est diagonalisable.

Exercice 236 : [énoncé]

a) Si M n'est pas inversible, il existe une colonne X non nulle telle que MX=0 et alors l'identité de l'énoncé donne ${}^tMX=X$ donc $1\in \operatorname{Sp}({}^tM)=\operatorname{Sp}M$. Inversement, si $1\in \operatorname{Sp}M$ alors il existe une colonne X non nulle telle que MX=X et alors l'identité de l'énoncé donne ${}^tMX=0$ et donc tM n'est pas inversible. Or $\det({}^tM)=\det M$ donc M n'est pas inversible non plus.

b) La relation donnée entraîne

$$({}^{t}M)^{2} = (I_{n} - M^{2})^{2} = M^{4} - 2M^{2} + I_{n}$$

Or

$$({}^{t}M)^{2} = {}^{t}(M^{2}) = I_{n} - M$$

donc

$$M^4 - 2M^2 + I_n = I_n - M$$

et donc la matrice M est annulé par le polynôme

$$P(X) = X^4 - 2X^2 + X = X(X - 1)(X^2 + X - 1)$$

C'est un polynôme scindé à racines simples donc la matrice M est diagonalisable.

Exercice 237 : [énoncé]

On a

$$(M^2 - 2I_n)^2 = ({}^tM)^2 = {}^t(M^2) = 2I_n - M$$

On en déduit le polynôme annulateur de M suivant

$$X^4 - 4X^2 + X + 2$$

qui se factorise

$$X^4 - 4X^2 + X + 2 = (X - 1)(X + 2)(X - \alpha)(X - \beta)$$

avec

$$\alpha = \frac{1+\sqrt{5}}{2}$$
 et $\beta = \frac{1-\sqrt{5}}{2}$

Puisque la matrice M annule un polynôme réel scindé à racines simples, cette matrice est diagonalisable.

Exercice 238 : [énoncé]

La relation donnée entraîne

$$({}^{t}M)^{2} = (I_{n} - M^{2})^{2} = M^{4} - 2M^{2} + I_{n}$$

Or

$$({}^{t}M)^{2} = {}^{t}(M^{2}) = I_{n} - M$$

donc

$$M^4 - 2M^2 + I_n = I_n - M$$

et donc la matrice M est annulée par le polynôme

$$P(X) = X^4 - 2X^2 + X = X(X - 1)(X^2 + X - 1)$$

Les valeurs propres possibles de M sont les racines de ce polynôme. Chacune de celles-ci peut être valeur propre. En effet pour les racines de $X^2 + X - 1$, il suffit de considérer une matrice diagonale avec les coefficients diagonaux correspondant aux racines. Pour les racines de X(X-1), il suffit de considérer

$$M = \frac{1}{2} \left(\begin{array}{cc} 1 & -i \\ i & 1 \end{array} \right)$$

La matrice M n'est pas nécessairement symétrique comme le montre l'exemple au dessus

La matrice M annule un polynôme scindé à racines simples, elle est donc diagonalisable.

Exercice 239: [énoncé]

- a) La matrice A annule le polynôme $X^p 1$ qui est scindé simple dans $\mathbb{C}[X]$ donc A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$.
- b) Les valeurs propres α et β sont racines du polynôme annulateur donc $\alpha^p = \beta^p = 1$. En particulier $|\alpha| = |\beta| = 1$.

Puisque det $A = \alpha \beta = 1$, on a $\alpha = 1/\beta = \bar{\beta}/|\beta|^2 = \bar{\beta}$.

Enfin, $\operatorname{tr} A = 2\operatorname{Re}(\alpha) \in \mathbb{Z}$ et $2\operatorname{Re}(\alpha) \in [-2, 2]$ car $|\alpha| \le 1$ donc $|\operatorname{Re}(\alpha)| \in \{0, 1/2, 1\}$.

c) Selon la valeur de $Re(\alpha)$ et sachant $|\alpha| = 1$, les valeurs possibles de α sont

$$-1, j, i, -j^2, 1$$

et leurs conjuguées.

Dans tous les cas, on vérifie $\alpha^{12} = 1$ et on a aussi $\beta^{12} = 1$.

Puisque A est semblable à la matrice diagonale $D = \text{diag}(\alpha, \beta)$ et que celle-ci vérifie $D^{12} = I_2$, on a $A^{12} = I_2$.

d) On vérifie aisément que G est un sous-groupe du groupe $(\mathrm{GL}_2(\mathbb{C}), \times)$ et puisque

$$G = \{I_2, A, A^2, \dots, A^{11}\}$$

G est un groupe monogène fini.

Exercice 240 : [énoncé]

a) Par récurrence

$$M^k = \left(\begin{array}{cc} A^k & kA^k \\ 0 & A^k \end{array}\right)$$

puis on étend par linéarité.

b) Si M est diagonalisable alors M annule un polynôme scindé simple P et les calculs précédents montrent que A annule aussi ce polynôme. Par suite A est diagonalisable. De plus A annule aussi le polynôme XP' de sorte que si λ est valeur propre de A alors A est racine commune de P et de XP'. Or P n'a que des racines simples donc P et P' n'ont pas de racines communes d'où $\lambda = 0$. A est diagonalisable et $\mathrm{Sp}(A) = \{0\}$ donne A = 0.

Exercice 241 : [énoncé]

a) Par récurrence et en exploitant AB = BA

Ainsi M est diagonalisable si, et seulement si, A = 0.

$$M^k = \left(\begin{array}{cc} A^k & kA^{k-1}B \\ 0 & A^k \end{array}\right)$$

puis on étend par linéarité.

b) Si M est diagonalisable alors M annule un polynôme scindé simple P et les calculs précédents montrent que A annule aussi ce polynôme. Par suite A est diagonalisable semblable à une matrice

$$D = \left(\begin{array}{ccc} \lambda_1 & & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{array} \right)$$

avec $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A qui sont racines de P. De plus, on a

$$P'(A)B = O_n$$

et la matrice P'(A) est semblable à

$$P'(D) = \begin{pmatrix} P'(\lambda_1) & (0) \\ & \ddots & \\ (0) & P'(\lambda_n) \end{pmatrix}$$

Puisque les racines de P sont simples et que les $\lambda_1, \ldots, \lambda_n$ sont racines de P, on a $P'(\lambda_1), \ldots, P'(\lambda_n) \neq 0$. On en déduit que la matrice P'(A) est inversible et l'identité $P'(A)B = O_n$ donne alors $B = O_n$.

Ainsi, si M est diagonalisable, A est diagonalisable et B est nulle. La réciproque est immédiate.

Exercice 242 : [énoncé]

Notons M la matrice étudiée et supposons celle-ci diagonalisable. Il existe un polynôme P scindé simple annulant M. Puisque

$$P(M) = \begin{pmatrix} P(A) & \star \\ O & P(A) \end{pmatrix} = O_{2n}$$

le polynôme Pannule aussi la matrice A qui est donc nécessairement diagonalisable.

De plus, puisque $\chi_M = \chi_A^2$, les matrices A et M ont les mêmes valeurs propres et on a l'égalité suivante sur leurs multiplicités :

$$\forall \lambda \in \operatorname{Sp}A, m_{\lambda}(M) = 2m_{\lambda}(A)$$

ce qui entraîne l'égalité suivante sur la dimension des sous-espaces propres

$$\forall \lambda \in \operatorname{Sp} A, \dim E_{\lambda}(M) = 2 \dim E_{\lambda}(A)$$

et enfin l'égalité de rang suivante

$$\forall \lambda \in \operatorname{Sp} A, \operatorname{rg}(M - \lambda I_{2n}) = 2\operatorname{rg}(A - \lambda I_n)$$

Or

$$\operatorname{rg}(M - \lambda I_{2n}) = \operatorname{rg}\left(\begin{array}{cc} A - \lambda I_n & B\\ O & A - \lambda I_n \end{array}\right)$$

La matrice A étant diagonalisable, on peut écrire $A = PDP^{-1}$ avec P inversible et

$$D = \begin{pmatrix} \lambda_1 I_{\alpha_1} & (0) \\ & \ddots & \\ (0) & \lambda_m I_{\alpha_m} \end{pmatrix}$$

où $\lambda_1, \ldots, \lambda_m$ sont les valeurs propres distinctes de A et $\alpha_k = \dim E_{\lambda_k}(A)$.

En considérant la matrice inversible $Q = \begin{pmatrix} P & O \\ O & P \end{pmatrix}$, on a

$$Q^{-1}MQ = \begin{pmatrix} D & C \\ O & D \end{pmatrix}$$
 avec $C = P^{-1}BP$.

On écrit la matrice C par blocs selon la même décomposition que A:

$$C = \begin{pmatrix} C_{1,1} & \cdots & C_{1,m} \\ \vdots & & \vdots \\ C_{m,1} & \cdots & C_{m,m} \end{pmatrix} \text{ avec } C_{i,j} \in \text{Mat}_{\alpha_i,\alpha_j}(\mathbb{K})$$

et la condition

$$\operatorname{rg}\left(\begin{array}{cc} A - \lambda_k I_n & B \\ O & A_k - \lambda I_n \end{array}\right) = 2\operatorname{rg}(A - \lambda_k I_n)$$

se relit après formule de passage $C_{k,k} = O_{\alpha_k}$.

Inversement, si la matrice A est diagonalisable et s'il y a nullité des blocs diagonaux d'une représentation de B dans une base adaptée à la décomposition de \mathbb{K}^n en somme de sous-espaces propres de A alors on peut reprendre dans l'autre sens l'étude qui précède pour affirmer que M est diagonalisable.

Exercice 243: [énoncé]

Soit M solution.

Puisque le corps de base est \mathbb{C} , la matrice M est semblable à une matrice triangulaire supérieure où figure sur la diagonale les valeurs propres de M comptées avec multiplicité.

Puisque tr(M) = n, la somme des valeurs propres de M comptées avec multiplicité vaut n.

Or les valeurs propres de M sont racines du polynôme $X^5-X^2=X^2(X^3-1)$, elle ne peuvent donc qu'être 0,1,j ou j^2 . Notons p,q,r et s les multiplicités de chacune; on a $\operatorname{tr} M=q+rj+sj^2=n$. Puisque les parties réelles de j et j^2 valent -1/2, la seule possibilité est que q=n,r=s=0 et alors p=0.

En particulier 0 n'est pas valeur propre de M et donc M est inversible. La relation $M^5 = M^2$ donne alors $M^3 = I_n$ et donc M est diagonalisable puisque M annule un polynôme scindé simple. Finalement M est semblable à I_n donc égale I_n car sa seule valeur propre est 1.

Inversement, la matrice I_n est solution.

Exercice 244: [énoncé]

a) On vérifie par le biais des relations proposées

$$M^2 - (\lambda + \mu)M + \lambda \mu I_p = O_p$$

On en déduit

$$M\left(\frac{\lambda+\mu}{\lambda\mu}I_p - \frac{1}{\lambda\mu}M\right) = I_p$$

Par le théorème d'inversibilité, M est inversible et

$$M^{-1} = \frac{\lambda + \mu}{\lambda \mu} I_p - \frac{1}{\lambda \mu} M$$

b)
$$M - \mu I_p = (\lambda - \mu)A$$
 et $M - \lambda I_p = (\mu - \lambda)B$.
Or

$$(M - \mu I_p)(M - \lambda I_p) = M^2 - (\lambda + \mu)M + \lambda \mu I_p = O_p$$

donc $(\lambda - \mu)^2 AB = O_p$ puis $AB = O_p$ car $\lambda \neq \mu$.

Puisque $A = A \times I_p = A^2 + AB = A^2$, A est un projecteur.

Il en est de même pour B.

c) M annule le polynôme scindé simple

$$X^{2} - (\lambda + \mu)X + \lambda\mu = (X - \lambda)(X - \mu)$$

La matrice M est donc diagonalisable et $Sp(M) \subset \{\lambda, \mu\}$.

Il se peut que cette inclusion soit stricte, c'est le cas si $M = \lambda I_p$ avec $A = I_p$ et $B = O_p$.

En tout cas, le spectre n'est pas vide car M est diagonalisable.

Exercice 245 : [énoncé]

On remarque

$$C^3 - C^2 = 3A + 3B = 3C$$

La matrice C annule donc le polynôme

$$X^3 - X^2 - 3X$$

On vérifie aisément que ce polynôme est scindé à racines simples et on peut donc affirmer que C est diagonalisable. Or

$$A = C^3 - 2C^2$$
 et $B = C + 2C^2 - C^3$

donc A et B sont diagonalisables.

Exercice 246 : [énoncé]

a) L'implication (⇐) est immédiate

 (\Rightarrow) Par récurrence sur $n \geqslant 2$.

Cas n=2

Soient $z_1, z_2 \in \mathbb{C}^*$ tels que

$$|z_1 + z_2| = |z_1| + |z_2|$$

En posant $u = z_2/z_1$, on a alors (car $z_1 \neq 0$)

$$|1 + u| = 1 + |u|$$

En écrivant u=a+ib avec $a,b\in\mathbb{R}$ et en élevant au carré l'identité précédente, on obtient

$$(1+a)^2 + b^2 = 1 + 2\sqrt{a^2 + b^2} + a^2 + b^2$$

et cette identité est vérifiée si, et seulement si, $a \in \mathbb{R}^+$ et b = 0 ce qui permet d'écrire $z_2 = \alpha_2 z_1$ avec $\alpha_2 = a \in \mathbb{R}^+$.

Supposons la propriété établie au rang $n \ge 2$.

Soient $z_1, \ldots, z_n, z_{n+1} \in \mathbb{C}$ avec $z_1 \neq 0$ tels que

$$\left| \sum_{k=1}^{n+1} z_k \right| = \sum_{k=1}^{n+1} |z_k|$$

Par l'inégalité triangulaire

$$\left| \sum_{k=1}^{n+1} z_k \right| \leqslant \left| \sum_{k=1}^n z_k \right| + |z_{n+1}| \leqslant \sum_{k=1}^{n+1} |z_k|$$

et puisque les termes extrémaux sont égaux on a

$$\left| \sum_{k=1}^{n} z_k \right| = \sum_{k=1}^{n} |z_k|$$

donc par hypothèse de récurrence on peut écrire pour tout $k \ge 2$

$$z_k = \alpha_k z_1 \text{ avec } \alpha_k \geqslant 0$$

On en déduit

$$\sum_{k=1}^{n} z_k = (1 + \alpha_2 + \dots + \alpha_n) z_1 \neq 0$$

et puisque

$$\left| \sum_{k=1}^{n} z_k + z_{n+1} \right| = \left| \sum_{k=1}^{n} z_k \right| + |z_{n+1}|$$

l'étude du cas n=2 permet d'écrire

$$z_{n+1} = a \sum_{k=1}^{n} z_k = \alpha_{n+1} z_1 \text{ avec } \alpha_{n+1} \in \mathbb{R}^+$$

Récurrence établie.

b) Si $M \in \mathcal{M}_n(\mathbb{C})$ vérifie $M^n = I_n$ et $\operatorname{tr} M = n$ alors cette matrice est diagonalisable (car annule le polynôme scindé à racines simples $X^n - 1$) et ses valeurs propres $\lambda_1, \ldots, \lambda_n$ vérifient

$$\lambda_1 + \dots + \lambda_n = n$$

Or les valeurs propres vérifient aussi

$$\forall 1 \leqslant k \leqslant n, \lambda_k^n = 1$$

et elles sont donc de module 1. Nous sommes donc dans la situation où

$$|\lambda_1 + \dots + \lambda_n| = |\lambda_1| + \dots + |\lambda_n|$$

Puisque $\lambda_1 \neq 0$, on peut écrire $\lambda_k = \alpha_k \lambda_1$ pour tout $k \geq 2$ avec $\alpha_k \geq 0$. Or tous les λ_k sont de module 1 donc les α_k sont égaux à 1 et par suite

$$\lambda_1 = \ldots = \lambda_n$$

Enfin puisque la somme des valeurs propres vaut n, on peut conclure

$$\lambda_1 = \ldots = \lambda_n = 1$$

et finalement $M = I_n$ car la matrice M est semblable à I_n . La réciproque est immédiate. Exercice 247: [énoncé]

a) Pour

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

on vérifie $A^4 = I_2$ et $B^3 = I_3$. On en déduit $M^{12} = I_5$.

Puisque M annule le polynôme $X^{12}-1$ scindé simple sur $\mathbb{C}[X]$, la matrice M est diagonalisable dans $\mathcal{M}_5(\mathbb{C})$.

b) Posons x=(1,0,1,0,0), on a m(x)=(0,1,0,1,0), $m^2(x)=(-1,0,0,0,1)$, $m^3(x)=(0,-1,1,0,0)$ et $m^4(x)=(1,0,0,1,0)$. On vérifie aisément que la famille correspondante est une base de \mathbb{R}^5 en observant par exemple qu'elle est génératrice.

Puisque $m^5(x) = (0, 1, 0, 0, 1)$, matrice de m dans cette nouvelle base est

$$\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)$$

Exercice 248 : [énoncé]

- a) $X^2 2X$ annule A.
- b) Puisque $A^2 2A = A(A 2I_2) = O_2$, on a $(M^2 + M)(M^2 + M 2I_2) = O_2$. On en déduit que

$$P(X) = (X^{2} + X)(X^{2} + X - 2) = X(X + 1)(X - 1)(X + 2)$$

est annulateur de M.

On en déduit que M est diagonalisable et que ces valeurs propres possibles sont 0, -1, 1, 2.

c) Notons λ et μ les deux valeurs propres de M.

Celles-ci ne peuvent être égales car si $\lambda=\mu$ alors $M=\lambda I_2$ n'est pas solution de l'équation.

Cas $\lambda = 0$ et $\mu = 1$

On a $M(M-I_2) = O_2$ donc $M^2 - M = O_2$. Combinée à la relation $M^2 + M = A$, on obtient

$$M = \frac{1}{2}A$$

Cas $\lambda = 0$ et $\mu = -2$

Un raisonnement analogue donne

$$M = -A$$

Cas $\lambda = 0$ et $\mu = -1$

On a $M^2 + M = O_2$ et donc ce cas est impossible etc.

Exercice 249 : [énoncé]

Posons

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$$

On obtient aisément $SpA = \{0, 2\}$

- a) Soit M une matrice solution de l'équation $M^2 + M = A$.
- Si λ est valeur propre de M alors $\lambda^2 + \lambda$ est valeur propre de A et donc

$$\lambda^2 + \lambda = 0$$
 ou $\lambda^2 + \lambda = 2$

On en déduit

$$\lambda \in \{0, -1, 1, -2\}$$

b) Posons

$$P(X) = X(X+1)(X-1)(X+2) = (X^2 + X)(X^2 + X - 2)$$

On a

$$P(M) = A(A - 2I_2) = O_2$$

Puisque M annule un polynôme scindé à racines simple, la matrice M est diagonalisable.

Notons λ et μ ses deux valeurs propres. Puisque $\lambda^2 + \lambda$ et $\mu^2 + \mu$ correspondent aux deux valeurs propres de A, on a, quitte à échanger λ et μ :

$$\lambda \in \{0, -1\} \text{ et } \mu \in \{1, -2\}$$

Il y a alors quatre situations possibles :

Cas $\lambda = 0$ et $\mu = 1$

On a $M(M-I_2)=O_2$ donc $M^2-M=O_2$. Combinée à la relation $M^2+M=A$, on obtient

$$M = \frac{1}{2}A$$

Cas $\lambda = 0$ et $\mu = -2$

Un raisonnement analogue donne

$$M = -A$$

Cas $\lambda = -1$

On obtient

$$M = A - I_2$$
 et $M = -I_2 - \frac{1}{2}A$

Inversement, on vérifie par le calcul que ces matrices sont solutions.

Exercice 250: [énoncé]

- a) Puisque $p^4 = p^2$, une valeur propre λ doit vérifier $\lambda^4 = \lambda^2$ donc $\lambda \in \{-1, 0, 1\}$.
- b) Si p est diagonalisable alors sa matrice A dans une base de vecteurs propres sera diagonale avec des -1,0 ou 1 sur la diagonale. Comme alors $A^3 = A$ on a $p^3 = p$.
- Si $p^3 = p$ alors p est annulé par un polynôme scindé à racines simples donc p est diagonalisable.

Exercice 251 : [énoncé]

Si 1 et -1 sont les seules valeurs propres alors $f \in GL(E)$ et la relation $f^4 = f^2$ donne $f^2 = Id$ ce qui fournit un polynôme annulateur scindé à racines simples et permet de conclure.

Si 1 et -1 ne sont pas les seules valeurs propres c'est que 0 est aussi valeur propre car les valeurs propres figurent parmi les racines de tout polynôme annulateur. f présente alors $3 = \dim E$ valeurs propres distincts donc f est diagonalisable.

Exercice 252: [énoncé]

 $\varphi^{2}(M) = P(PM + MP) + (PM + MP)P = PM + 2PMP + MP \text{ car } P^{2} = P.$ $\varphi^{3}(M) = PM + 6PMP + MP.$

Par suite $\varphi^3(M) - 3\varphi^2(M) = -2PM - 2MP = -2\varphi(M)$.

Ainsi φ annule le polynôme $X^3 - 3X^2 + 2X = X(X-1)(X-2)$.

Puisque ce polynôme est scindé simple, l'endomorphisme φ est diagonalisable.

Exercice 253: [énoncé]

a) Puisque $u^3=u$, par annulation d'un polynôme scindé simple, on peut affirmer que u est diagonalisable de valeurs propres possibles 0,1,-1. Par les égalités $\operatorname{tr} u=0$ et $\operatorname{tr} u^2=2n$ on peut affirmer qu'il existe une base de \mathbb{R}^{2n+1} dans laquelle la matrice de u est de la forme

$$A = \left(\begin{array}{ccc} I_n & 0 & 0\\ 0 & -I_n & 0\\ 0 & 0 & 0 \end{array}\right)$$

Les matrices commutant avec A étant celle de la forme

$$\left(\begin{array}{ccc}
M & 0 & 0 \\
0 & N & 0 \\
0 & 0 & \alpha
\end{array}\right)$$

avec $M, N \in \mathcal{M}_n(\mathbb{R})$, on peut affirmer

$$\dim C(u) = 2n^2 + 1$$

b) $\Pi_u = X^3 - X$ donc dim $\mathbb{R}[u] = 3$ et par suite $C(u) = \mathbb{R}[u]$ si, et seulement si, n = 1.

Exercice 254: [énoncé]

- a) Si $A^2 = A$ alors $f_A^2 = f_A$. f_A est une projection donc diagonalisable.
- b) Pour tout $P \in \mathbb{R}[X]$, on observe $P(f_A) : M \mapsto P(A)M$ de sorte que

$$P(f_A) = 0 \Leftrightarrow P(A) = 0$$

Tout endomorphisme étant diagonalisable si, et seulement si, il annule un polynôme scindé simple, on peut conclure.

Exercice 255: [énoncé]

- a) oui.
- b) Si A est inversible alors $M\mapsto A^{-1}M$ est clairement application réciproque de f.
- Si f est inversible alors posons $B = f^{-1}(I_n)$. On a $AB = I_n$ donc A est inversible.
- c) On observe que $f^n(M) = A^n M$ donc pour $P \in \mathbb{C}[X]$,

$$P(f)(M) = P(A)M$$

Par suite P est annulateur de f si, et seulement si, il est annulateur de A. Puisque la diagonalisabilité équivaut à l'existence d'un polynôme annulateur scindé à racines simples, on peut conclure.

Exercice 256: [énoncé]

- a) En développant, on vérifie $(f \alpha Id) \circ (f \beta Id) = \tilde{0}$.
- L'endomorphisme f annule un polynôme scindé simple, il est donc diagonalisable. De plus $\operatorname{Sp} f \subset \{\alpha, \beta\}$.

On $af(x) = \alpha x \Leftrightarrow \beta v(x) = \alpha v(x) \Leftrightarrow v(x) = 0$.

b) On a $(f - \beta Id) = (\alpha - \beta)u$ et $(f - \alpha Id) = (\beta - \alpha)v$.

La relation $(f - \alpha \operatorname{Id}) \circ (f - \beta \operatorname{Id}) = \tilde{0}$ donne $v \circ u = \tilde{0}$ et par un calcul symétrique on obtient aussi $u \circ v = \tilde{0}$.

On en déduit $u = u \circ Id = u^2 + u \circ v = u^2$ et donc u est une projection vectorielle.

De plus $\ker u = \ker ((\alpha - \beta)u) = \ker (f - \beta \operatorname{Id})$ et

 $\operatorname{Im} u = \ker(\operatorname{Id} - u) = \ker v = \ker(f - \alpha \operatorname{Id}).$

c) Par récurrence $f^n = \alpha^n u + \beta^n v$.

Exercice 257: [énoncé]

Par élimination de u, on a $f^2 - \alpha f = \beta(\beta - \alpha)v$ et $f^3 - \alpha f^2 = \beta^2(\beta - \alpha)v$.

Par élimination de v, on obtient $f \circ (f - \alpha \operatorname{Id}) \circ (f - \beta \operatorname{Id}) = \tilde{0}$.

Ainsi $P = X(X - \alpha)(X - \beta)$ est annulateur de f.

Cas $\alpha \neq \beta$ et $\alpha, \beta \neq 0$

f est diagonalisable car annule un polynôme scindé simple.

Cas $\alpha = \beta = 0$

f est diagonalisable car f est l'endomorphisme nul.

Cas $\beta = 0$ et $\alpha \neq 0$.

On a $f^2 - \alpha f = 0$ donc f est diagonalisable car annule le polynôme scindé simple $X(X - \alpha)$.

Cas $\alpha = 0$ et $\beta \neq 0$.

Semblable.

Cas $\alpha = \beta \neq 0$.

On a $f = \alpha(u+v)$ et $f^2 = \alpha^2(u+v)$ donc à nouveau $f^2 - \alpha f = 0$.

Dans tous les cas, l'endomorphisme f est diagonalisable.

Exercice 258: [énoncé]

a) On a

$$\phi^3(f) = p^3 \circ f \circ s^3 = p \circ f \circ s = \phi(f)$$

L'endomorphisme ϕ annule le polynôme $X^3 - X = X(X - 1)(X + 1)$.

Ce polynôme étant scindé simple, l'endomorphisme ϕ est diagonalisable.

b) Les valeurs propres possibles de ϕ sont 0, 1, -1.

En raisonnant dans une base adaptée à la décomposition $E=F\oplus G,$ les matrices de p et s sont de la forme

$$\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$
 et $\begin{pmatrix} I_r & O \\ O & -I_s \end{pmatrix}$

avec $r = \dim F$ et $s = \dim G$. La matrice de f sera dans une même décomposition par blocs de la forme

$$\left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

et par calcul la matrice de $\phi(f)$ sera

$$\left(\begin{array}{cc} A & -B \\ O & O \end{array}\right)$$

Il est alors facile de résoudre les équations $\phi(f)=\lambda f$ pour $\lambda=0,1,-1.$ On obtient

$$E_0(\phi) = \{ f \in \mathcal{L}(E) / \mathrm{Im} f \subset G \}$$

$$E_1(\phi) = \{ f \in \mathcal{L}(E) / G \subset \ker f \text{ et } \operatorname{Im} f \subset F \}$$

et

$$E_{-1}(\phi) = \{ f \in \mathcal{L}(E) / F \subset \ker f \text{ et } \operatorname{Im} f \subset G \}$$

Exercice 259 : [énoncé]

a) On a

$$f(f(M)) = M + (2 + \operatorname{tr}(AB))\operatorname{tr}(AM)B$$

donc

$$P(X) = X^2 - (2 + \operatorname{tr}(AB))X + 1 + \operatorname{tr}(AB)$$

est annulateur de f. Les racines de ce polynôme sont 1 et $1+\operatorname{tr}(AB)$. Si $\operatorname{tr}(AB)\neq 0$ alors f est diagonalisable car annulé par un polynôme scindé simple.

Pour M appartenant à l'hyperplan défini par la condition $\operatorname{tr}(AM) = 0$, on a f(M) = M.

Pour $M \in \text{Vect}(B) \neq \{0\}$, on a f(M) = (1 + tr(AB))M.

Ce qui précède détermine alors les sous-espaces propres de f.

Si tr(AB)=0 alors 1 est la seule valeur propre possible de f et donc f est diagonalisable si, et seulement si, $f=\mathrm{Id}$ ce qui donne la conditio

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}(AM)B = O_n$$

Cette propriété a lieu si, et seulement si, $A = O_n$ ou $B = O_n$.

b) Si $A = O_n$ ou $B = O_n$ alors f = Id et donc

$$\dim C = n^4$$

Si $\operatorname{tr}(AB) \neq 0$ alors f est diagonalisable avec des sous-espaces propres de dimensions 1 et n^2-1 . On en déduit

$$\dim C = 1 + (n^2 - 1)^2$$

Il reste à étudier le cas complémentaire

$$\operatorname{tr}(AB) = 0 \text{ et } A = O_n \text{ ou } B = O_n$$

Considérons une base de l'hyperplan de $\mathcal{M}_n(\mathbb{R})$ donnée par l'équation $\operatorname{tr}(AM) = 0$ dont le premier éléments serait B. Complétons celle-ci en une base de $\mathcal{M}_n(\mathbb{R})$. La matrice de f dans cette base est de la forme

$$\begin{pmatrix} 1 & & (0) & \lambda \\ & \ddots & & \\ (0) & & 1 & (0) \\ & & & (0) & 1 \end{pmatrix} \text{ avec } \lambda \neq 0$$

En étudiant la commutation avec une telle matrice, on obtient

$$\dim C = n^4 - 2n^2 + 2$$

Exercice 260 : [énoncé]

On observe

$$f \circ f(M) = \operatorname{tr}(A) \left(\operatorname{tr}(A)M - \operatorname{tr}(M)A \right) - \operatorname{tr}\left(\operatorname{tr}(A)M - \operatorname{tr}(M)A \right) A = \operatorname{tr}(A)f(M)$$

Ainsi

$$f \circ f = \operatorname{tr}(A).f$$

Si $\operatorname{tr} A \neq 0$ alors l'endomorphisme f est diagonalisable car annule le polynôme $X^2 - \operatorname{tr}(A)X$ qui est scindé à racines simples.

Si $\operatorname{tr} A=0$ alors les valeurs propres de f figurent parmi les racines du polynôme X^2 . Seule 0 peut donc être valeur propre de f et par conséquent f est diagonalisable si, et seulement si, $f=\tilde{0}$. Ceci correspond au cas $A=O_n$.

Déterminons maintenant les sous-espaces propres de f.

Le cas $A = O_n$ est immédiat. Supposons-le désormais exclu.

Si tr(M) = 0 alors

$$f(M) = \operatorname{tr}(A)M$$

Pour M matrice de l'hyperplan des matrices de trace nulle, $f(M) = \lambda M$ avec $\lambda = \operatorname{tr}(A)$. On en déduit que $\operatorname{tr}(A)$ est valeur propre de M et le sous-espace propre associé est de dimension au moins $n^2 - 1$.

Dans le cas où tr(A) = 0, l'endomorphisme n'est pas diagonalisable et la dimension du sous-espace propre associé à la valeur propre tr(A) est exactement $n^2 - 1$.

Dans le cas où $\operatorname{tr}(A) \neq 0$, l'endomorphisme f est diagonalisable et donc la dimension des sous-espaces propres des valeurs propres 0 et $\operatorname{tr}(A)$ sont respectivement 1 et n^2-1 .

Exercice 261 : [énoncé]

- a) p + q = Id, $p \circ q = 0$ car (u aId)(u bId) = 0, $p = p \circ \text{Id} = p \circ p + p \circ q = p \circ p$, aussi $q \circ q = q$ via $q \circ p = 0$.
- b) $\ker p = \ker(u a\operatorname{Id})$, $\ker q = \ker(u b\operatorname{Id})$ et $(u a\operatorname{Id})(u b\operatorname{Id}) = 0$ donne par le lemme de décomposition des noyaux, $E = \ker p \oplus \ker q$.
- c) u est diagonalisable car annule un polynôme scindé simple.
- $\operatorname{Sp}(u) = \{a, b\}, E_a(u) = \ker p, E_b(u) = \ker q \text{ à moins que } u = a \operatorname{Id} \text{ ou } u = b \operatorname{Id}.$

Exercice 262 : [énoncé]

f est diagonalisable car annule le polynôme

$$X^3 - 4X = X(X - 2)(X + 2)$$

scindé simple. Les valeurs propres de f figurent parmi $\{-2,0,2\}$ et donc la trace de f qui est la somme de ses valeurs propres comptées avec multiplicité est paire.

Exercice 263: [énoncé]

A annule un polynôme scindé à racines simples (1, i et -i) donc A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

Les valeurs propres possibles de A sont 1, i et -i. Puisque $\operatorname{tr}(A) \in \mathbb{R}$, la multiplicité de i égale celle de -i.

Par suite det(A) = 1.

Exercice 264: [énoncé]

A est diagonalisable sur $\mathbb C$ semblable à une matrice $D=\mathrm{diag}(-I_p,-jI_q,-j^2I_q)$ donc

$$trA = trD = -p - q(j + j^2) = q - p \in \mathbb{Z}$$

Exercice 265 : [énoncé]

Le polynôme

$$X^{3} + X^{2} + X = X(X - i)(X - i^{2})$$

annule la matrice A. Ce polynôme étant scindé à racines simples dans \mathbb{C} , la matrice A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$. De plus

$$\operatorname{Sp} A \subset \left\{0, j, j^2\right\}$$

Puisque la matrice A est réelle, les valeurs propres j et j^2 ont même multiplicité $p \in \mathbb{N}$. La diagonalisation complexe de A comporte alors p nombres j et p nombres j^2 sur la diagonale, les éventuels autres coefficients diagonaux étant nuls. La matrice A est alors de même rang que cette matrice diagonale, c'est-à-dire 2p.

Exercice 266: [énoncé]

La matrice A est diagonalisable car A annule un polynôme scindé simple. Les racines complexes du polynôme caractéristique χ_A de A sont conjuguées et valeurs propres de A donc racines du polynôme annulateur $X^n - 1$. Si les deux racines de χ_A sont réelles alors $\operatorname{Sp} A \subset \{-1,1\}$ et A est semblable à

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ ou $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

et donc $A^{12} = I_2$.

Sinon les racines de χ_A sont complexes conjuguées z, \bar{z} non réelles. Leur somme sera $2\text{Re}(z) \in [-2,2]$, leur produit $z\bar{z} = |z|^2 = 1$. La matrice A étant de plus à coefficients entiers, $2\text{Re}(z) \in \mathbb{Z}$. Les polynômes caractéristiques de A possibles sont alors $X^2 - 2X + 1$, $X^2 - X + 1$, $X^2 + 1$, $X^2 + X + 1$ et $X^2 + 2X + 1$. Les cas $X^2 - 2X + 1$ et $X^2 + 2X + 1$ sont à éliminer car correspondant à des racines réelles (et déjà traités).

Dans chaque autre cas, le polynôme $X^{12}-1$ est multiple du polynôme caractéristique et donc annulateur.

Exercice 267: [énoncé]

Si $A \in E_n$ alors A est diagonalisable et ses valeurs propres sont des racines de l'unité. Ces valeurs propres sont aussi racines du polynôme caractéristique de A. Or les coefficients de ce polynôme sont entiers et, par les expressions des coefficients d'un polynôme scindé en fonction de ses racines complexes (ici de module 1), on peut borner les coefficients du polynôme caractéristique de A. Par suite, il n'y a qu'un nombre fini de polynômes caractéristiques possibles pour un élément $A \in E_n$. Ces polynômes ont eux-mêmes qu'un nombre fini de racines et il n'y a donc qu'un nombre fini de racines de l'unité possibles pour les valeurs propres de $A \in E_n$.

On peut alors affirmer qu'il existe $N \in \mathbb{N}^*$ tel que toutes les valeurs propres λ des matrices $A \in E_n$ vérifient $\lambda^N = 1$. On a alors aussi $A^N = 1$ (car A est diagonalisable) et donc $\omega(A) \leq N$. Ainsi $\omega(E_n) \subset [1, N]$.

Exercice 268 : [énoncé]

fannule un polynôme scindé à racines simple et $f_{\mid F}$ aussi.

Exercice 269: [énoncé]

Le sous-espace vectoriel $F=\mathrm{Vect}(e_1,e_2)$ est stable par u et l'endomorphisme induit par u sur F a pour matrice

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

dans (e_1, e_2) .

Or cette matrice n'est pas diagonalisable donc l'endomorphisme induit par u sur F n'est pas diagonalisable et donc u ne l'est pas non plus.

Exercice 270: [énoncé]

Si f et g sont simultanément diagonalisables alors on peut former une base de chaque sous-espace propre de f à l'aide de vecteur propre de g. Par suite les sous-espaces propres de f sont stables par g et inversement.

Supposons que les sous-espaces propres de f soient stables par g. f étant diagonalisable, E est la somme directe des sous-espaces propres de f. Sur chaque sous-espace propre de f, la restriction de g définit un endomorphisme diagonalisable car annulé par un polynôme scindé à racines simples (car g diagonalisable). Cela permet de construire une base de diagonalisation simultanée.

Exercice 271 : [énoncé]

Si f et g sont simultanément diagonalisable alors leurs représentations diagonales commutent donc f et g commutent.

Si f et g commutent alors g laisse stable chaque sous-espace propre $E_{\lambda}(f)$ et donc la restriction de g à celui-ci est diagonalisable dans une certaine base \mathcal{B}_{λ} . En accolant les bases \mathcal{B}_{λ} , pour $\lambda \in \operatorname{Sp}(f)$ on obtient une base où f et g sont représentés par des matrices diagonales.

Exercice 272 : [énoncé]

- a) Une base de vecteur propre de u est aussi une base de vecteur propre de P(u).
- b) La réciproque n'est pas vraie en toute généralité comme le montre le cas d'un polynôme constant.

En revanche, on peut montrer que la réciproque est vraie si $\deg P=1.$

Exercice 273: [énoncé]

a) Une base diagonalisant f diagonalise aussi f^2 et permet d'affirmer

$$rgf = rgf^2$$

Sachant $\ker f \subset \ker f^2$, on obtient $\ker f = \ker f^2$ par égalité des dimensions.

b) Posons

$$A = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)$$

Un endomorphisme représenté par A n'est pas diagonalisable alors que son carré est nul et donc diagonalisable.

c) Supposons f diagonalise et $\ker f = \ker f^2$. Soit P le polynôme minimal de f^2 . Celui-ci est scindé à racines simples car f^2 est diagonalisable. Cas 0 n'est pas racine de P.

On peut écrire

$$P = \prod_{i=1}^{p} (X - \lambda_i) \text{ avec } \forall 1 \leq i \leq n, \lambda_i \neq 0$$

Pour chaque λ_i , posons δ_i et $-\delta_i$ les deux solutions complexes de l'équation

$$z^2 = \lambda_i$$

Considérons ensuite

$$Q = \prod_{i=1}^{p} (X - \delta_i)(X + \delta_i)$$

Le polynôme Q est scindé à racines simples et $Q(f)=P(f^2)=0.$

On en déduit que f est diagonalisable.

Cas 0 est racine de P.

On peut écrire

$$P = X \prod_{i=1}^{p} (X - \lambda_i) \text{ avec } \forall 1 \leq i \leq n, \lambda_i \neq 0$$

En reprenant les notations ci-dessus, et on considérant le polynôme

$$Q = \prod_{i=1}^{p} (X - \delta_i)(X + \delta_i)$$

on a

$$f^2Q(f) = P(f^2) = 0$$

Ainsi

$$\operatorname{Im}Q(f) \subset \ker f^2$$

or $\ker f^2 = \ker f$ donc

$$fQ(f) = 0$$

Ainsi f annule le polynôme scindé à racines simples

$$R = X \prod_{i=1}^{p} (X - \delta_i)(X + \delta_i)$$

On en déduit à nouveau f diagonalisable.

Exercice 274 : [énoncé]

a) u est diagonalisable si, et seulement si, u annule un polynôme scindé à racines simples.

ou encore:

u est diagonalisable si, et seulement si, le polynôme minimal de u est scindé à racines simples.

b) Si u est diagonalisable, il est clair que u^2 l'est aussi.

Inversement, si u^2 est diagonalisable alors son polynôme annulateur est scindé à racines simples : $(X - \lambda_1)...(X - \lambda_p)$.

Puisque $u \in GL(E)$: $\forall 1 \leq i \leq p, \lambda_i \neq 0$ car 0 n'est pas valeur propre de u.

Notons α_i et β_i les deux solutions de l'équation $z^2 = \lambda_i$.

Puisque $(u^2 - \lambda_1 \operatorname{Id}) \circ \ldots \circ (u^2 - \lambda_p \operatorname{Id}) = 0$ on a

$$(u - \alpha_1 \operatorname{Id}) \circ (u - \beta_1 \operatorname{Id}) \circ \dots \circ (u - \alpha_p \operatorname{Id}) \circ (u - \beta_p \operatorname{Id}) = 0.$$

Ainsi u annule un polynôme scindé à racines simples. Par suite u est diagonalisable.

c) Si u est diagonalisable alors P(u) l'est aussi.

Inversement, si P(u) est diagonalisable alors son polynôme minimal est scindé à racines simples $(X - \lambda_1) \dots (X - \lambda_p)$ où les λ_i sont les valeurs propres de P(u). Le polynôme $(P(X) - \lambda_1) \dots (P(X) - \lambda_p)$ est alors annulateur de u.

Les facteurs $P(X) - \lambda_i$ sont sans racines communes.

Le polynôme minimal M de u divise $(P(X) - \lambda_1) \dots (P(X) - \lambda_p)$.

Si ω est racine au moins double de M alors ω est racine au moins double de l'un des facteurs $P(X) - \lambda_i$ donc racine de P'.

Or ω est aussi valeur propre de u donc $P'(\omega) = 0$ est valeur propre de P'(u). Cependant $P'(u) \in GL(E)$, c'est donc impossible.

Par suite les racines de M sont simples et u est donc diagonalisable.

Exercice 275 : [énoncé]

Soient $\lambda_1, \ldots, \lambda_n$ les valeurs propres deux à deux distinctes de P(u). Posons

$$Q = \prod_{k=1}^{n} (X - \lambda_k)$$

Q est un polynôme annulateur de P(u) donc

$$\prod_{k=1}^{n} (P(u) - \lambda_k \mathrm{Id}_E) = \tilde{0}$$

Posons $Q_k = P - \lambda_k$. Le polynôme $\prod_{k=1}^n Q_k$ est annulateur de u et les racines d'un polynôme Q_k sont distinctes de celles d'un polynôme Q_ℓ avec $k \neq \ell$ car $\lambda_k \neq \lambda_\ell$. De plus si α est racine multiple de Q_k alors $P(\alpha) = \lambda_k$ et $Q'_k(\alpha) = P'(\alpha) = 0$ ce qui est exclu par hypothèse.

Par conséquent le polynôme $\prod_{k=1}^{n} Q_k$ est scindé simple donc u est diagonalisable.

Exercice 276: [énoncé]

Si A est diagonalisable, on peut écrire $A=PDP^{-1}$ avec P inversible et D diagonale. On a alors $B=A^p=P^{-1}D^pP$ avec D^p diagonale et donc B est diagonalisable.

Inversement, si B est diagonalisable alors il existe un polynôme annulateur de B scindé à racines simple de la forme

$$\prod_{k=1}^{m} (X - \lambda_k)$$

De plus, puisque B est inversible, on peut supposer les λ_k tous non nuls. Sachant $B = A^p$, le polynôme

$$\prod_{k=1}^{m} \left(X^p - \lambda_k \right)$$

est annulateur de A. Or ce dernier est scindé à racines simples car

- les facteurs $X^p \lambda_k$ et $X^p \lambda_\ell$ (avec $k \neq \ell$) ont des racines deux à deux distinctes :
- les racines de $X^p \lambda_k$ sont toutes simples (car $\lambda_k \neq 0$). On en déduit que A est diagonalisable.

Exercice 277: [énoncé]

- a) A est semblable à une matrice triangulaire supérieure stricte T.
- b) On peut écrire $A = PTP^{-1}$ donc

$$\det(A+I_n) = \det(T+I_n) = 1$$

c) $\det(A + M) = \det(M) \det(AM^{-1} + I_n)$.

Puisque $(AM^{-1})^n = A^nM^{-n} = O_n$, 0 est la seule valeur propre de AM^{-1} et par l'étude qui précède $\det(A+M) = \det M$.

d) Si A est solution alors pour tout $\lambda \neq 0$, $\det(A - \lambda I_n) \neq 0$ donc 0 est seule valeur propre de A.

Exercice 278: [énoncé]

Puisque le polynôme $X^3 - X^2 = X^2(X - 1)$ annule f le lemme de décomposition des novaux donne

$$\mathbb{R}^3 = \ker f^2 \oplus \ker(f - \mathrm{Id})$$

Sachant dim $\ker(f - \operatorname{Id}) = 1$, on a dim $\ker f^2 = 2$.

On ne peut avoir dim ker f = 0 et puisque ker $f \subset \ker f^2$, on a

 $\dim \ker f = 1$ ou 2

Si dim $\ker f = 2$ alors

$$\mathbb{R}^3 = \ker(f - \operatorname{Id}) \oplus \ker f$$

et dans une base adaptée à cette supplémentarité, la matrice de f est

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

Si dim ker f = 1 alors considérons $e_3 \in \ker f^2 \setminus \ker f$ et $e_2 = f(e_3)$.

On vérifie aisément que (e_2, e_3) est une base de ker f^2 et en considérant un vecteur $e_1 \in \ker(f - \operatorname{Id})$ non nul, on obtient une base (e_1, e_2, e_3) dans laquelle la matrice de f est

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)$$

Exercice 279 : [énoncé]

dim ker A=n-2 donc 0 est valeur propre de A de multiplicité au moins n-2. Puisque χ_A est scindé, la trace de A est la somme des valeurs propres de A comptées avec multiplicité.

Si 0 est la seule valeur propre de A alors A est semblable à une matrice triangulaire supérieure stricte et alors $A^n = O_n$ ce qui est exclu.

Sinon A possède alors une autre valeur propre, puis deux car la somme des valeurs propres est nulle. Par suite la somme des dimensions des sous-espaces propres de A est au moins n et donc A est diagonalisable.

Exercice 280 : [énoncé]

Le polynôme

$$X^3 - 4X^2 + 4X = X(X-2)^2$$

est annulateur de M.

On en déduit $\operatorname{Sp} M \subset \{0,2\}$ et M trigonalisable (car M annule un polynôme scindé).

Par suite ${\rm tr} M$ est la somme des valeurs propres de M comptées avec multiplicité et puisque ${\rm tr} M=0$, seule 0 est valeur propre de M.

On en déduit que la matrice $M-2I_n$ est inversible et puisque

$$M(M - 2I_n)^2 = O_n$$

on obtient

$$M = O_n$$

Exercice 281 : [énoncé]

Si A est solution alors $P = X(X-2)^2$ est annulateur de A et les valeurs propres de A figurent parmi $\{0,2\}$. Par la trace, on peut alors affirmer que 2 est valeur propre de multiplicité 4.

Par le lemme de décomposition des noyaux, $\ker(A-2\mathrm{Id})^2$ et $\ker A$ sont supplémentaires.

Par multiplicité des valeurs propres, leurs dimensions respectives sont 4 et n-4. Ainsi A est semblable à

$$\left(\begin{array}{cc} 2I_4 + M & 0\\ 0 & O_{n-4} \end{array}\right)$$

avec $M \in \mathcal{M}_4(\mathbb{C})$ vérifiant $M^2 = 0$.

En raisonnant sur le rang, on montre que M est semblable à

La réciproque est immédiate.

Exercice 282: [énoncé]

- a) Puisque A est nilpotente, A ne peut avoir que des valeurs propres nulles. Les valeurs propres étant les racines du polynôme caractéristique et ce dernier étant scindé sur \mathbb{C} , $\chi_A = X^n$.
- b) Pour $A \in \mathcal{M}_n(\mathbb{R})$, on a aussi $A \in \mathcal{M}_n(\mathbb{C})$ et le polynôme caractéristique est calculé par la même formule dans les deux cas.

Exercice 283: [énoncé]

- a) Si $A \in \mathcal{M}_n(\mathbb{C})$ alors A est triangularisable et lors de cette triangularisation les valeurs propres de A apparaissent sur la diagonale. Or A est nilpotent donc 0 est sa seule valeur propre et la diagonale de la matrice triangulaire obtenue est nulle. Le polynôme caractéristique de $A \in \mathcal{M}_n(\mathbb{C})$ est alors égal à X^n .
- b) Pour $A \in \mathcal{M}_n(\mathbb{R})$, on a aussi $A \in \mathcal{M}_n(\mathbb{C})$ et le polynôme caractéristique est calculé par la même formule dans les deux cas. Par suite le polynôme caractéristique pour $A \in \mathcal{M}_n(\mathbb{R})$ est scindé et donc à nouveau A est triangularisable avec des 0 sur la diagonale.

Exercice 284: [énoncé]

Puisque la matrice A est nilpotente, on a

$$A^n = O_n$$

et donc puisque A et B commutent

$$(AB)^n = A^n B^n = O_n$$

On en déduit que la matrice AB est aussi nilpotente. Elle est alors semblable à une matrice triangulaire supérieure stricte et donc

$$tr(AB) = 0$$

Exercice 285 : [énoncé]

- a) Si λ est valeur propre de A alors $\lambda^p = 0$ d'où $\lambda = 0$. Par suite $\chi_A = (-1)^n X^n$ puis par Cayley Hamilton $A^n = 0$.
- b) $\det(A+I) = \chi_A(-1) = (-1)^n(-1)^n = 1$
- c) Si M est inversible $\det(A + M) = \det(AM^{-1} + I) \det M$.

Or A et M^{-1} commutent donc $(AM^{-1})^p=0$ puis par b) : $\det(A+M)=\det M$. Si M n'est pas inversible. Posons $M_p=M+\frac{1}{p}I_n$. Quand $p\to +\infty$, M_p est inversible et commute avec A donc $\det(A+M_p)=\det M_p$. Or $\det M_p\to \det M$ et $\det(A+M_p)\to \det(A+M)$ donc on peut prolonger l'égalité à toute matrice qui commute avec A.

d) Non prendre :
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 et $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Exercice 286 : [énoncé]

On a

$$\det(A+N) = \det(A)\det(I_n + A^{-1}N)$$

Puisque A et N commutent, il en est de même de A^{-1} et N. On en déduit que la matrice $A^{-1}N$ est nilpotente car N l'est.

La matrice $A^{-1}N$ est alors semblable à une matrice triangulaire supérieure stricte et la matrice $I_n + A^{-1}N$ est semblable à une matrice triangulaire supérieure avec des 1 sur la diagonale.

On en déduit

$$\det(I_n + A^{-1}N) = 1$$

puis

$$\det(A+N) = \det A$$

Exercice 287 : [énoncé]

Si la matrice A est nilpotente alors elle est annulée par un polynôme X^m et donc

$$\operatorname{Sp} A \subset \{0\}$$

Dans $\mathcal{M}_n(\mathbb{C})$, la matrice A est trigonalisable semblable à une matrice triangulaire supérieure stricte

$$T = \left(\begin{array}{ccc} 0 & & \star \\ & \ddots & \\ 0 & & 0 \end{array}\right)$$

De la même façon, les matrices A^p sont aussi semblables à des matrices triangulaires supérieures strictes et donc

$$\forall p \in [1, n], \operatorname{tr} A^p = 0$$

Inversement, supposons $\operatorname{tr} A^p = 0$ pour tout $p \in [1, n]$.

Nous allons montrer que seule 0 est valeur propre de A. On pourra alors par trigonalisation affirmer que la matrice A est semblable dans $\mathcal{M}_n(\mathbb{C})$ à une matrice triangulaire supérieure stricte T et puisque $T^n = O_n$ on aura aussi $A^n = O_n$ ce qui conclut.

Par l'absurde supposons donc que la matrice ${\cal A}$ ait au moins une valeur propre non nulle.

Notons $\lambda_1,...,\lambda_m$ les valeurs propres non nulles de la matrice A et $\alpha_1,...,\alpha_m$ leurs multiplicités respectives.

En procédant encore à une trigonalisation de la matrice A, on peut affirmer

$$\forall 1 \leqslant p \leqslant n, \operatorname{tr}(A^p) = \sum_{i=1}^m \alpha_i \lambda_i^p = 0$$

On ne retient que les m premières équations pour exprimer le système

$$\begin{cases} \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_m \alpha_m = 0 \\ \lambda_1^2 \alpha_1 + \lambda_2^2 \alpha_2 + \dots + \lambda_m^2 \alpha_m = 0 \\ \dots \\ \lambda_1^m \alpha_1 + \lambda_2^m \alpha_2 + \dots + \lambda_m^m \alpha_m = 0 \end{cases}$$

Ce système peut se percevoir sous la forme matricielle VX=0 avec $X={}^t\left(\alpha_1\ldots\alpha_m\right)$ et

$$V = \begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_m \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_m^2 \\ \vdots & \vdots & & \vdots \\ \lambda_1^m & \lambda_2^m & \cdots & \lambda_m^m \end{pmatrix}$$

Le déterminant de la matrice V se calcule par déterminant de Vandermonde et est non nul car $\lambda_1, \ldots, \lambda_m \neq 0$. On en déduit

$$\forall 1 \leqslant i \leqslant m, \alpha_i = 0$$

ce qui est absurde car les α_i étaient des multiplicités de véritables valeurs propres.

Exercice 288: [énoncé]

a) Supposons qu'il existe $p \in \mathbb{N}^*$ tel que $f^p = 0$.

 X^p est annulateur de f donc $\operatorname{Sp}(f) \subset \{0\}$. Or $\operatorname{Sp}(f) \neq \emptyset$ donc $\operatorname{Sp}(f) = \{0\}$. Inversement, si $\operatorname{Sp}(f) = \{0\}$ alors seule 0 est racine de son polynôme caractéristique. Or χ_f est scindé dans $\mathbb{C}[X]$ donc $\chi_f = (-1)^n X^n$ puis $f^n = 0$ en vertu du théorème de Cayley Hamilton. On en déduit que f est nilpotente. b) Supposons f nilpotent.

Par l'étude ci-dessus, f est trigonalisable stricte et donc

$$\forall 1 \leqslant k \leqslant n, \operatorname{tr}(f^k) = 0$$

car les puissances de f pour ront aussi être représentées par des matrices triangulaires strictes.

Inversement, supposons

$$\forall 1 \leqslant k \leqslant n, \operatorname{tr}(f^k) = 0$$

En notant $\lambda_1, \ldots, \lambda_n$ les valeurs propres comptées avec multiplicité de A, on obtient le système

$$\begin{cases} \lambda_1 + \dots + \lambda_n = 0 \\ \lambda_1^2 + \dots + \lambda_n^2 = 0 \\ \dots \\ \lambda_1^n + \dots + \lambda_n^n = 0 \end{cases}$$

La résolution de ce système est délicate.

En raisonnant par récurrence, nous allons établir que la seule solution est $\lambda_1 = \ldots = \lambda_n = 0$ ce qui permettra de conclure que f est nilpotente car $\chi_f = (-1)^n X^n$ est annulateur de f.

Pour n=1 : la propriété est immédiate.

Supposons la propriété au rang n-1.

Considérons le polynôme

$$P(X) = (X - \lambda_1) \dots (X - \lambda_n)$$

En développant,

$$P(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}$$

Comme
$$P(\lambda_i) = 0$$
, on a $\sum_{i=1}^n P(\lambda_i) = 0$.

Or

$$\sum_{i=1}^{n} P(\lambda_i) = \sum_{i=1}^{n} \lambda_i^n + a_{n-1} \sum_{i=1}^{n} \lambda_i^{n-1} + \dots + a_1 \sum_{i=1}^{n} \lambda_i + na_0 = na_0$$

On en déduit $a_0 = 0$ et donc 0 est racine de P.

Il existe alors $i \in \{1, ..., n\}$ tel que $\lambda_i = 0$.

Par symétrie du problème, on peut supposer $\lambda_n = 0$.

Par application de l'hypothèse de récurrence, on obtient $\lambda_1 = \ldots = \lambda_n = 0$. La récurrence est établie.

Exercice 289: [énoncé]

Si u possède une unique valeur propre λ alors celle-ci est la seule racine de son polynôme caractéristique qui est alors $(X - \lambda)^{\dim E}$. Ce dernier annulant u, on peut affirmer $u - \lambda \operatorname{Id}_E$ est nilpotent.

Si $u - \lambda \operatorname{Id}_E$ est nilpotent alors il existe $p \in \mathbb{N}$ tel que $(X - \lambda)^p$ soit annulateur de u. Les valeurs propres de u étant racine de ce polynôme, elles ne peuvent qu'être égale à λ . De plus λ est assurément valeur propre car un endomorphisme d'un \mathbb{C} -espace vectoriel de dimension finie possède au moins une valeur propre.

Exercice 290 : [énoncé]

Rappelons qu'une matrice M carrée de taille n qui est nilpotente vérifie $M^n = O_n$ (l'ordre de nilpotence est au plus égal à la taille de la matrice). On a

$$\forall k \in \{0, \dots, n\}, (A + 2^k B)^n = O_n$$

Considérons alors la matrice

$$(A+XB)^n \in \mathcal{M}_n(\mathbb{K}[X])$$

Celle-ci est à coefficients polynomiaux de degrés inférieurs à n. Puisque $1, 2, \ldots, 2^n$ sont n+1 racines distinctes de ces coefficients, ceux-ci sont tous nuls. On en déduit

$$A^n = O_n$$

car les coefficients constants sont nuls, et

$$B^n = O_n$$

car les coefficients des termes X^n sont aussi nuls.

Exercice 291 : [énoncé]

Une matrice $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente vérifie $M^n = O_n$. Considérons la matrice $(A+xB)^n$. Les coefficients de cette matrice sont des polynômes de degrés inférieurs à n s'annulant chacun en les $\lambda_1, \ldots, \lambda_n, \lambda_{n+1}$, ce sont donc des polynômes nuls. Ainsi, pour tout $x \in \mathbb{C}$, $(A+xB)^n = O_n$. En particulier pour x=0, on obtient $A^n = O_n$. Aussi pour tout $y \neq 0$, en considérant y=1/x, on a $(yA+B)^n = O_n$ et en faisant $y \to 0$, on obtient $B^n = O_n$.

Exercice 292 : [énoncé]

a) \mathcal{I}_1 est l'idéal des polynômes annulateurs de u; il est engendré par $P_1=\pi_u$ polynôme minimal de u.

La somme de deux endomorphismes nilpotents commutant est encore nilpotent car la formule du binôme de Newton s'applique et il suffit de travailler avec un exposant assez grand. On obtient alors facilement que \mathcal{I}_2 est un sous-groupe de $(\mathbb{K}[X],+)$. La stabilité par absorption étant immédiate, \mathcal{I}_2 est un idéal de $\mathbb{K}[X]$ et comme il contient \mathcal{I}_1 , il est non nul.

b) Puisque $\mathcal{I}_1 \subset \mathcal{I}_2$, $P_1 \in P_2 \mathbb{K}[X]$ et donc $P_2 \mid P_1$.

Aussi, en posant n la dimension de E, on sait que pour tout endomorphisme nilpotent de v de E, on a $v^n = \tilde{0}$. Puisque $P_2(u)$ est nilpotent, on en déduit que $(P_2)^n(u) = \tilde{0}$ et donc $P_1 \mid P_2^n$.

c) Cette question est immédiate avec la décomposition de Dunford mais cette dernière est hors-programme...Procédons autrement!

Puisque $P_2 \mid P_1$ et $P_1 \mid P_2^n$, les racines de P_2 sont exactement celles de P_1 c'est-à-dire les valeurs propres de l'endomorphisme u. On peut donc écrire

$$P_2 = \prod_{\lambda \in \mathrm{Sp}u} (X - \lambda)^{\alpha_{\lambda}}$$

Or $P_2(u)$ étant nilpotent, il est immédiat que l'endomorphisme $\prod_{\lambda \in \operatorname{Sp} u} (u - \lambda \operatorname{Id}_E)$

l'est aussi.

On en déduit que

$$P_2 = \prod_{\lambda \in \mathrm{Sp}u} (X - \lambda)$$

et ce polynôme est donc scindé simple.

Déterminons maintenons un polynôme $R \in \mathbb{K}[X]$ tel que pour $Q = P_2R$, on ait $P_2(u - Q(u)) = \tilde{0}$.

On en déduira que u - Q(u) est diagonalisable avec $Q(u) \in \mathcal{I}_2$.

L'identité $P_2(u-Q(u))=\tilde{0}$ est obtenue dès que P_1 divise le polynôme

$$P_2(X - P_2(X)R(X)) = \prod_{\lambda \in \text{Sp}u} (X - \lambda - P_2(X)R(X))$$

Or $P_1 = \prod_{\lambda \in \operatorname{Sp} u} (X - \lambda)^{\beta_{\lambda}}$ donc il suffit que pour chaque $\lambda \in \operatorname{Sp} u$, le facteur $(X - \lambda)^{\beta_{\lambda}}$ divise le facteur $X - \lambda - P_2(X)R(X)$ pour pouvoir conclure. On a

$$X - \lambda - P_2(X)R(X) = (X - \lambda) \left(1 - \prod_{\mu \neq \lambda} (X - \mu)R(X) \right)$$

La condition voulue est assurément vérifiée si $\beta_{\lambda} = 1$.

Pour $\beta_{\lambda} \geqslant 2$, la condition voulue est satisfaite si $\prod_{\mu \neq \lambda} (\lambda - \mu) R(\lambda) = 1$ et si pour

tout $k \in \{1, \dots, \beta_{\lambda} - 2\}$, la dérivée kème du polynôme $\prod_{\mu \neq \lambda} (X - \mu) R(X)$ s'annule

en λ . Cela fournit des équations déterminant pleinement

$$R(\lambda), R'(\lambda), \dots, R^{\beta_{\lambda}-2}(\lambda) \operatorname{car} \prod_{\mu \neq \lambda} (\lambda - \mu) \neq 0.$$

Sachant qu'il est possible de construire un polynôme prenant des valeurs données ainsi que ses dérivées en des éléments deux à deux distincts de \mathbb{K} , on peut déterminer un polynôme résolvant notre problème.

Exercice 293: [énoncé]

- a) $O_2^2 = O_2$ donc $\Phi(O_2)^2 = \Phi(O_2)$ d'où $\Phi(O_2) = 0$ ou 1.
- Si $\Phi(O_2) = 1$ alors pour tout $A \in \mathcal{M}_2(\mathbb{R})$,
- $\Phi(A) = \Phi(A) \times \Phi(O_2) = \Phi(A \times O_2) = 1.$

Ceci est exclu car la fonction Φ n'est pas constante. On en déduit $\Phi(O_2) = 0$.

- b) Si A est nilpotente alors $A^2 = O_2$ (car A est de taille 2) et donc $\Phi(A)^2 = 0$ puis $\Phi(A) = 0$.
- c) $I_2^2 = I_2 \text{ donc } \Phi(I_2)^2 = \Phi(I_2) \text{ puis } \Phi(I_2) = 0 \text{ ou } 1.$
- Si $\Phi(I_2) = 0$ alors pour tout $A \in \mathcal{M}_2(\mathbb{R}), \ \Phi(A) = \Phi(A \times I_2) = \Phi(A) \times 0 = 0.$

Ceci est exclu car la fonction Φ n'est pas constante. On en déduit $\Phi(I_2) = 1$.

Notons
$$E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

On remarque $E^2 = I_2$ donc $\Phi(E)^2 = 1$ puis $\Phi(E) = -1$ car $\Phi(E) \neq \Phi(I_2)$.

Puisque B = EA, on en déduit $\Phi(B) = -\Phi(A)$.

d) Si A est inversible alors $\Phi(I_2) = \Phi(A) \times \Phi(A^{-1})$ et donc $\Phi(A) \neq 0$ puisque $\Phi(I_2) = 1 \neq 0$.

Inversement, supposons A non inversible. 0 est valeur propre de A.

On vérifie aisément que deux matrices A et B semblables vérifient $\Phi(A) = \Phi(B)$. Si A est diagonalisable alors A est semblable à

$$\begin{pmatrix} 0 & 0 \\ 0 & \text{tr}A \end{pmatrix}$$

Par suite

$$\Phi(A) = \Phi \left(\begin{array}{cc} 0 & 0 \\ 0 & \mathrm{tr} A \end{array} \right) = -\Phi \left(\begin{array}{cc} 0 & \mathrm{tr} A \\ 0 & 0 \end{array} \right) = 0$$

car cette dernière matrice est nilpotente.

Si A n'est pas diagonalisable A est trigonalisable (car χ_A scindé sur $\mathbb R$) et A est semblable à

 $\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$

et par suite $\Phi(A) = 0$ car cette dernière matrice est nilpotente.

Exercice 294: [énoncé]

- a) $\operatorname{Sp} A = \{0\}$ et $A \neq O_n$ donc A n'est pas diagonalisable.
- b) On remarque $A^n = O_n$ et $A^{n-1} \neq O_n$.

S'il existe $B \in \mathcal{M}_n(\mathbb{R})$ vérifiant $B^2 = A$ alors $B^{2n} = A^n = O_n$ donc B est nilpotente. Par suite $B^n = O_n$.

Or $B^{2n-2} \neq O_n$ avec $2n-2 \geqslant n$, c'est absurde.

Exercice 295 : [énoncé]

a) Par le développement limite de $\sqrt{1+x}$ en 0 on peut écrire

$$\sqrt{1+x} = P_n(x) + O(x^n)$$

avec P_n polynôme de degré inférieur à n-1.

b) On a

$$P_n^2(x) = (\sqrt{1+x} + O(x^n))^2 = 1 + x + O(x^n)$$

donc

$$P_n^2(x) - x - 1 = O(x^n)$$

Notons α la multiplicité de 0 en tant que racine du polynôme $P_n^2(X) - X - 1$. On peut écrire $P_n^2(X) - X - 1 = X^{\alpha}Q(X)$ avec $Q(0) \neq 0$ et donc

$$x^{\alpha}Q(x) = O(x^n)$$
 au voisinage de 0

puis

$$x^{\alpha - n}Q(x) = O(1)$$

Nécessairement $\alpha - n \geqslant 0$ et on en déduit que 0 est racine de multiplicité au moins n du polynôme $P_n^2(X) - X - 1$ et donc que X^n divise ce polynôme. c) Puisque X^n annule f, $P_n^2(X) - X - 1$ annule aussi f et alors l'endomorphisme $g = P_n(f)$ vérifie

$$g^2 = f + \mathrm{Id}_E$$

d) Puisque E est un \mathbb{C} -espace vectoriel, le polynôme caractéristique de f est scindé et puisque λ est sa seule valeur propre, celui-ci est

$$\chi_f = (-1)^n (X - \lambda)^n$$

En vertu du théorème de Cayley-Hamilton, on a $(f - \lambda \operatorname{Id}_E)^n = \tilde{0}$. Considérons alors $\mu \in \mathbb{C}$ vérifiant $\mu^2 = \lambda$ et posons

$$g = \mu P_n((f - \lambda \mathrm{Id}_E)/\mu^2)$$

Puisque $(f - \lambda Id_E)/\mu^2$ vérifie l'hypothèse du c), on a

$$g^2 = \mu^2 \left(\frac{f - \lambda \operatorname{Id}_E}{\mu^2} + \operatorname{Id}_E \right) = f$$

Exercice 296: [énoncé]

a) On remarque

$$\forall k \geqslant 2, A^k = A^2$$

En particulier $A^4 = A^2$ donc $X^2 - X = X(X - 1)$ annule A^2 . Ce poly étant scindé simple, la matrice A^2 est diagonalisable.

De plus $(A^2 - A)^2 = A^4 - 2A^3 + A^2 = O_n$ donc $A^2 - A$ est nilpotente.

b) On remarque

$$\forall i \geqslant k, A^i = A^k$$

et donc $A^{2k}=A^k$ ce qui assure comme au dessus que A^k est diagonalisable et

$$(A^k - A)^k = \sum_{i=0}^k (-1)^i \binom{k}{i} A^{k(k-i)+i} = \sum_{i=0}^k (-1)^i \binom{k}{i} A^k = O_n$$

Exercice 297 : [énoncé]

a) Puisque H est un hyperplan et que $I_n \notin H$, on a

$$H \oplus \operatorname{Vect}(I_n) = \mathcal{M}_n(\mathbb{K})$$

Soit A une matrice nilpotente. On peut l'écrire $A=B+\lambda I_n$ avec $B\in H$. La matrice B n'étant pas inversible, il existe une colonne X non nulle telle que BX=O et alors $AX=\lambda X$. Le scalaire λ est une valeur propre de la matrice A. Or les seules valeurs propres d'une matrice nilpotente sont nulles. On en déduit $\lambda=0$ puis $A=B\in H$.

b) Les matrices élémentaires $E_{i,j}$ avec $i \neq j$ sont nilpotentes car de carrées nulles; elles sont donc toutes éléments de H et par combinaison linéaire la matrice

$$M = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & (0) & \ddots & 1 \\ 1 & & & 0 \end{pmatrix}$$

appartient à H. Cependant celle-ci est notoirement inversible.

Exercice 298 : [énoncé]

a) Sachant $MA = O_n$, on a $\operatorname{Im} A \subset \ker M$. Introduisons F un sous-espace vectoriel supplémentaire de $\ker M$ dans $\mathcal{M}_{n,1}(\mathbb{C})$. En considérant une matrice de passage P traduisant un changement de base vers une base adaptée à la supplémentarité

$$\mathcal{M}_{n,1}(\mathbb{C}) = \ker M \oplus F$$

on obtient les écritures par blocs

$$P^{-1}AP = \begin{pmatrix} A_1 & A_2 \\ O & O \end{pmatrix} \text{ et } P^{-1}MP = \begin{pmatrix} O & M_1 \\ O & M_2 \end{pmatrix}$$

On a alors

$$\chi_A = \chi_{A_1} \times X^{\dim F}$$
 et $\chi_{A+M} = \chi_{A_1} \chi_{M_2}$

Or M_2 est une matrice nilpotente complexe, sa seule valeur propre étant 0, on obtient

$$\chi_{M_2} = X^{\dim F}$$

et l'identité voulue est établie.

b) C'est le même raisonnement avec $\text{Im} M \subset \ker A$ et l'introduction d'un sous-espace vectoriel F tel que

$$\mathcal{M}_{n,1}(\mathbb{C}) = \ker A \oplus F$$

On a alors

$$P^{-1}AP = \begin{pmatrix} O & A_1 \\ O & A_2 \end{pmatrix} \text{ et } P^{-1}MP = \begin{pmatrix} M_1 & M_2 \\ O & O \end{pmatrix}$$

avec M_1 nilpotente.

Exercice 299: [énoncé]

a) Notons qu'il est immédiat de vérifier que L_A est une forme linéaire sur E. Par linéarité de la trace, on vérifie $\operatorname{tr}((\lambda A + \mu B)M) = \lambda \operatorname{tr}(AM) + \mu \operatorname{tr}(BM)$ ce qui fournit la linéarité de l'application L.

Puisque dim $E = \dim E^* < +\infty$, il suffit désormais de vérifier l'injectivité de L pour assurer qu'il s'agit d'un isomorphisme. Si $L_A = 0$ (l'application nulle) alors en particulier $L_A({}^t\bar{A}) = 0$ et donc $\operatorname{tr}(A^t\bar{A}) = \operatorname{tr}({}^t\bar{A}A) = 0$.

$$\operatorname{tr}({}^{t}\bar{A}A) = \sum_{i,j=1}^{n} |a_{i,j}|^{2}$$

donc A=0.

Puisque les hyperplans sont exactement les noyaux des formes linéaires non nulles, on peut assurer que pour tout hyperplan H de E, il existe $A \in \mathcal{M}_n(\mathbb{C})$ non nulle telle que

$$H = \{ M \in \mathcal{M}_n(\mathbb{C})/\operatorname{tr}(AM) = 0 \}$$

b) Pour tout matrice $M\in T_n^+$, le produit TM est triangulaire à coefficients diagonaux nuls donc $\operatorname{tr}(TM)=0$. Ainsi $T_n^+\subset H$ puis $H\cap T_n^+=T_n^+$. Concernant $H\cap T_n^-$, ou bien c'est un hyperplan de T_n^- , ou bien c'est T_n^- entier. S'il n'y a pas de coefficient non nul dans le bloc supérieur strict de T alors T est diagonale et un calcul analogue au précédent donne $H\cap T_n^-=T_n^-$ (de dimension n(n-1)/2)

Sinon, on peut déterminer une matrice élémentaire dans T_n^- qui n'est pas dans H (si $[T]_{i,j} \neq 0$ alors $E_{j,i}$ convient) et donc $H \cap T_n^-$ est un hyperplan de T_n^- (de dimension n(n-1)/2-1).

- c) Les matrices triangulaire strictes sont bien connues nilpotentes... Une base de T_n^+ adjointe à une base de $H \cap T_n^-$ fournit une famille libre (car T_n^+ et T_n^- sont en somme directe) et celle-ci est formée d'au moins $n(n-1)/2 + n(n-1)/2 1 = n^2 n 1$ éléments.
- d) Soit H un hyperplan de E. Il existe $A \in \mathcal{M}_n(\mathbb{C})$ non nulle telle que

$$H = \{ M \in \mathcal{M}_n(\mathbb{C})/\operatorname{tr}(AM) = 0 \}$$

La matrice A est trigonalisable donc on peut écrire $A = PTP^{-1}$ avec $P \in GL_n(\mathbb{C})$ et T triangulaire supérieure non nulle. Posons alors l'isomorphisme $\varphi: M \to P^{-1}MP$ et considérons l'hyperplan

$$K = \{ N \in \mathcal{M}_n(\mathbb{C})/\mathrm{tr}(TN) = 0 \}$$

On constate

$$M \in H \Leftrightarrow \varphi(N) \in K$$

Par l'isomorphisme φ , on transforme une famille de n^2-n-1 matrices nilpotentes linéairement indépendantes d'éléments de K en une famille telle que voulue.

Exercice 300 : [énoncé]

Commençons par établir pour $A, B \in \mathcal{M}_n(\mathbb{K})$:

$$A \neq O_n, AB = BA \text{ et } B \text{ nilpotente } \Rightarrow \operatorname{rg}(AB) < \operatorname{rg}A$$

Supposons donc $A \neq O_n$, AB = BA et B nilpotente.

Par l'absurde, supposons aussi $rg(AB) \ge rgA$.

Puisque $rg(AB) \leq min(rgA, rgB)$, on a rg(AB) = rgA.

Par la formule du rang, on obtient

$$\dim \ker(AB) = \dim \ker A$$

Or $\ker A \subset \ker(BA) = \ker(AB)$ donc $\ker A = \ker(AB)$.

Considérons ensuite $\varphi: \operatorname{Im} A \to \operatorname{Im} A$ donné par $\varphi(Y) = BY$.

L'application φ est linéaire et bien définie car ${\rm Im}A$ est stable par B puisque A et B commutent.

Soit $Y = AX \in \text{Im}A$

Si $\varphi(Y) = 0$ alors BAX = ABX = 0 donc $X \in \ker(AB) = \ker A$ puis Y = 0.

L'application linéaire φ est donc injective.

Or il existe $p \in \mathbb{N}^{\star}$ tel que $B^p = O_n$ et donc $\varphi^p : Y \to B^p Y = O_{n,1}$ est

l'application nulle.

Sachant l'espace $\operatorname{Im} A$ non réduit à $\{0\}$, il y a absurdité et ainsi $\operatorname{rg}(AB) < \operatorname{rg} A$.

En revenant à l'énoncé initial, on montre alors par récurrence

$$\forall 1 \leqslant p \leqslant n, \operatorname{rg}(A_1 A_2 \dots A_p) \leqslant n - p$$

et en particulier $rg(A_1A_2...A_n)=0$.